Skip to main content

Quasi-Monte Carlo Image Synthesis in a Nutshell

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods 2012

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 65))

Abstract

This self-contained tutorial surveys the state of the art in quasi-Monte Carlo rendering algorithms as used for image synthesis in the product design and movie industry. Based on the number theoretic constructions of low discrepancy sequences, it explains techniques to generate light transport paths to connect cameras and light sources. Summing up their contributions on the image plane results in a consistent numerical algorithm, which due to the superior uniformity of low discrepancy sequences often converges faster than its (pseudo-) random counterparts. In addition, its deterministic nature allows for simple and efficient parallelization while guaranteeing exact reproducibility. The underlying techniques of parallel quasi-Monte Carlo integro-approximation, the high speed generation of quasi-Monte Carlo points, treating weak singularities in a robust way, and high performance ray tracing have many applications outside computer graphics, too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Antwerpen, D.: Unbiased physically based rendering on the GPU. Master’s thesis, Computer Graphics Research Group, Department of Software Technology Faculty EEMCS, Delft University of Technology, The Netherlands (2011)

    Google Scholar 

  2. Cools, R., Kuo, F., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cools, R., Reztsov, A.: Different quality indexes for lattice rules. J. Complexity 13, 235–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cranley, R., Patterson, T.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dahm, K.: A comparison of light transport algorithms on the GPU. Master’s thesis, Computer Graphics Group, Saarland University (2011)

    Google Scholar 

  6. Dammertz, H.: Acceleration Methods for Ray Tracing based Global Illumination. Ph.D. thesis, Universität Ulm (2011)

    Google Scholar 

  7. Dammertz, H., Hanika, J.: Plane sampling for light paths from the environment map. J. Graph. GPU Game Tools 14, 25–31 (2009)

    Article  Google Scholar 

  8. Dammertz, S., Keller, A.: Image synthesis by rank-1 lattices. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 217–236. Springer, Berlin/Heidelberg (2008)

    Chapter  Google Scholar 

  9. Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)

    Book  MATH  Google Scholar 

  10. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Edwards, D.: Practical Sampling for Ray-Based Rendering. Ph.D. thesis, The University of Utah (2008)

    Google Scholar 

  12. Faure, H.: Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337–351 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Faure, H.: Good permutations for extreme discrepancy. J. Number Theory 42, 47–56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedel, I., Keller, A.: Fast generation of randomized low-discrepancy point sets. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 257–273. Springer, Berlin/Heidelberg (2002)

    Chapter  Google Scholar 

  15. Frolov, A., Chentsov, N.: On the calculation of certain integrals dependent on a parameter by the Monte Carlo method. Zh. Vychisl. Mat. Fiz. 2, 714–717 (1962). (in Russian)

    Google Scholar 

  16. Glassner, A.: Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  17. Grünschloß, L.: Motion Blur. Master’s thesis, Ulm University (2008)

    Google Scholar 

  18. Grünschloß, L., Keller, A.: (t, m, s)-nets and maximized minimum distance, Part II. In: L’Ecuyer, P., Owen, A. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 395–409. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  19. Grünschloß, L., Raab, M., Keller, A.: Enumerating Quasi-Monte Carlo point sequences in elementary intervals. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 399–408. Springer, Berlin (2012)

    Chapter  Google Scholar 

  20. Hachisuka, T., Pantaleoni, J., Jensen, H.: A path space extension for robust light transport simulation. ACM Trans. Graph. 31, 191:1–191:10 (2012)

    Google Scholar 

  21. Halton, J.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hanika, J.: Spectral light transport simulation using a precision-based ray tracing architecture. Ph.D. thesis, Universität Ulm (2010)

    Google Scholar 

  23. Hickernell, F., Hong, H., L’Ecuyer, P., Lemieux, C.: Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM J. Sci. Comput. 22, 1117–1138 (2001)

    Article  MathSciNet  Google Scholar 

  24. Hlawka, E.: Discrepancy and Riemann integration. In: Mirsky, L. (ed.) Studies in Pure Mathematics, pp. 121–129. Academic Press, New York (1971)

    Google Scholar 

  25. Hlawka, E., Mück, R.: Über eine Transformation von gleichverteilten Folgen II. Computing 9, 127–138 (1972)

    Article  MATH  Google Scholar 

  26. Hong, H.: Digital Nets and Sequences for Quasi-Monte Carlo Methods. Ph.D. thesis, Hong Kong Baptist University (2002)

    Google Scholar 

  27. Jensen, H.: Global illumination using photon maps. In: Rendering Techniques 1996: Proceedings of the 7th Eurographics Workshop on Rendering, Porto, pp. 21–30. Springer (1996)

    Google Scholar 

  28. Jensen, H.: Realistic Image Synthesis Using Photon Mapping. AK Peters, Natick (2001)

    Book  MATH  Google Scholar 

  29. Joe, S., Kuo, F.: Remark on algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Software 29, 49–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Joe, S., Kuo, F.: Constructing Sobol’ sequences with better two-dimensional projections. SIAM J. Sci. Comput. 30, 2635–2654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Keller, A.: Quasi-Monte Carlo methods in computer graphics: The global illumination problem. Lect. Appl. Math. 32, 455–469 (1996)

    Google Scholar 

  32. Keller, A.: Trajectory splitting by restricted replication. Monte Carlo Methods Appl. 10, 321–329 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Keller, A.: Myths of computer graphics. In: Niederreiter, H., Talay, D. (ed.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 217–243. Springer, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  34. Keller, A., Binder, N.: Deterministic consistent density estimation for light transport simulation. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, this volume 467–480. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  35. Keller, A., Droske, M., Grünschloß, L., Seibert, D.: A divide-and-conquer algorithm for simultaneous photon map queries. Poster at High-Performance Graphics in Vancouver (2011)

    Google Scholar 

  36. Keller, A., Grünschloß, L.: Parallel Quasi-Monte Carlo integration by partitioning low discrepancy sequences. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 487–498. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  37. Keller, A., Grünschloß, L., Droske, M.: Quasi-Monte Carlo progressive photon mapping. In: Plaskota, L., Woźniakowsi, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 499–509. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  38. Keller, A., Heidrich, W.: Interleaved sampling. In: Myszkowski, K., Gortler, S. (eds.) Rendering Techniques 2001: Proceedings of the 12th Eurographics Workshop on Rendering, London, pp. 269–276. Springer (2001)

    Google Scholar 

  39. Keller, A., Wächter, C.: Efficient ray tracing without auxiliary acceleration data structure. Poster at High-Performance Graphics in Vancouver (2011)

    Google Scholar 

  40. Keller, A., Wächter, C., Kaplan, M.: System, method, and computer program product for consistent image synthesis. United States Patent Application US20110025682 (2011)

    Google Scholar 

  41. Knaus, C., Zwicker, M.: Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. (TOG) 25, (2011)

    Google Scholar 

  42. Kollig, T., Keller, A.: Efficient bidirectional path tracing by randomized Quasi-Monte Carlo integration. In: Niederreiter, H., Fang, K., Hickernell, F. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 290–305. Springer, Berlin (2002)

    Chapter  Google Scholar 

  43. Kollig, T., Keller, A.: Efficient multidimensional sampling. Comput. Graph. Forum (Proc. Eurographics 2002) 21, 557–563 (2002)

    Google Scholar 

  44. Kollig, T., Keller, A.: Illumination in the presence of weak singularities. In: Niederreiter, H., Talay, D., (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 245–257. Springer, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  45. Kritzer, P.: On an example of finite hybrid quasi-Monte Carlo point sets. Monatsh. Math. 168, 443–459 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kritzer, P., Leobacher, G., Pillichshammer, F.: Component-by-component construction of hybrid point sets based on Hammersley and lattice point sets. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, this volume 501–515. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  47. Lafortune, E.: Mathematical models and Monte Carlo algorithms for physically based rendering. Ph.D. thesis, KU Leuven, Belgium (1996)

    Google Scholar 

  48. L’Ecuyer, P., Munger, D.: Latticebuilder: a general software tool for constructing rank-1 lattice rules. ACM Trans. Math. Software (2012, submitted)

    Google Scholar 

  49. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)

    MATH  Google Scholar 

  50. Maize, E.: Contributions to the Theory of Error Reduction in Quasi-Monte Carlo Methods. Ph.D. thesis, Claremont Graduate School (1980)

    Google Scholar 

  51. Maize, E., Sepikas, J., Spanier, J.: Accelerating the convergence of lattice methods by importance sampling-based transformations. In: Plaskota, L., Woźniakowski, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 557–572. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  52. Matoušek, J.: On the L 2-discrepancy for anchored boxes. J. Complexity 14, 527–556 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Tran. Graph. (Proc. SIGGRAPH 2003) 22, 759–769 (2003)

    Google Scholar 

  54. Niederreiter, H.: Quasirandom sampling in computer graphics. In: Proceedings of the 3rd International Seminar on Digital Image Processing in Medicine, Remote Sensing and Visualization of Information, Riga, Latvia, pp. 29–34 (1992)

    Google Scholar 

  55. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  56. Niederreiter, H.: Error bounds for quasi-Monte Carlo integration with uniform point sets. J. Comput. Appl. Math. 150, 283–292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  57. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Progressive virtual beam lights. Comput. Graph. Forum (Proceedings of EGSR 2012) 31, 1407–1413 (2012)

    Google Scholar 

  58. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., Jarosz, W.: Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph. (Proceedings of ACM SIGGRAPH 2012) 60, (2012)

    Google Scholar 

  59. Nuyens, D., Waterhouse, B.: A global adaptive quasi-Monte Carlo algorithm for functions of low truncation dimension applied to problems of finance. In: Plaskota L., Woźniakowsi, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2010, pp. 591–609. Springer, Berlin/Heidelberg (2012)

    Google Scholar 

  60. Ohbuchi, R., Aono, M.: Quasi-Monte Carlo rendering with adaptive sampling. IBM Tokyo Research Laboratory (1996)

    Google Scholar 

  61. Owen, A.: Orthogonal arrays for computer experiments, integration and visualization. Stat. Sin. 2, 439–452 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Owen, A.: Randomly permuted (t, m, s)-nets and (t, s)-sequences. In: Niederreiter, H., Shiue, P.J.-S. (eds.) Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, vol. 106, pp. 299–315. Springer, New York (1995)

    Chapter  Google Scholar 

  63. Owen, A.: Monte Carlo variance of scrambled net quadrature. SIAM J. Numer. Anal. 34, 1884–1910 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  64. Owen, A., Zhou, Y.: Safe and effective importance sampling. J. Amer. Statist. Assoc. 95, 135–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  65. Paskov, S.: Termination criteria for linear problems. J. Complexity 11, 105–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pharr, M., Humphreys, G.: Physically Based Rendering, 2nd edn. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  67. Press, H., Teukolsky, S., Vetterling, T., Flannery, B.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  68. Raab, M., Seibert, D., Keller, A.: Unbiased global illumination with participating media. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 669–684. Springer, Berlin (2007)

    Google Scholar 

  69. Shirley, P.: Discrepancy as a quality measure for sampling distributions. In: Eurographics ’91, Vienna, pp. 183–194. Elsevier/North-Holland, Amsterdam (1991)

    Google Scholar 

  70. Shirley, P.: Realistic Ray Tracing. AK Peters, Natick (2000)

    Google Scholar 

  71. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, Boca Raton (1986)

    Book  MATH  Google Scholar 

  72. Sloan, I., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)

    MATH  Google Scholar 

  73. Sobol’, I.: On the Distribution of points in a cube and the approximate evaluation of integrals. Zh. vychisl. Mat. mat. Fiz. 7, 784–802 (1967)

    Google Scholar 

  74. Sobol’, I.: Die Monte-Carlo-Methode. Deutscher Verlag der Wissenschaften (1991)

    Google Scholar 

  75. Sobol’, I., Asotsky, D., Kreinin, A., Kucherenko, S.: Construction and comparison of high-dimensional Sobol’ generators. WILMOTT Mag. 56, 64–79 (2011)

    Google Scholar 

  76. Spanier, J., Maize, E.: Quasi-random methods for estimating integrals using relatively small samples. SIAM Rev. 36, 18–44 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  77. Steinert, B., Dammertz, H., Hanika, J., Lensch, H.: General spectral camera lens simulation. Comput. Graph. Forum 30, 1643–1654 (2011)

    Article  Google Scholar 

  78. Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press, Boston (1988)

    MATH  Google Scholar 

  79. Veach, E.: Robust Monte Carlo methods for light transport simulation. Ph.D. thesis, Stanford University (1997)

    Google Scholar 

  80. Veach, E., Guibas, L.: Optimally combining sampling techniques for Monte Carlo rendering. In: Proceedings of the SIGGRAPH 1995, Annual Conference Series, Los Angeles, pp. 419–428 (1995)

    Google Scholar 

  81. Veach, E., Guibas, L.: Metropolis light transport. In: Whitted, T. (ed.) Proceedings of the SIGGRAPH 1997, Annual Conference Series, Los Angeles, pp. 65–76. ACM SIGGRAPH, Addison Wesley (1997)

    Google Scholar 

  82. Wächter, C.: Quasi-Monte Carlo light transport simulation by efficient ray tracing. Ph.D. thesis, Universität Ulm (2008)

    Google Scholar 

  83. Wächter, C., Keller, A.: System and process for improved sampling for parallel light transport simulation. ISF MI-12-0006-US0 filed as United States Patent Application US20130194268 (2013)

    Google Scholar 

  84. Wang, Y., Hickernell, F.: An historical overview of lattice point sets. In: Fang, K.-T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 158–167. Springer, Berlin/Heidelberg (2002)

    Chapter  Google Scholar 

  85. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77, 313–352 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  86. Woźniakowski, H., Traub, J.: Breaking intractability. Sci. Am. 270, 102–107 (1994)

    Google Scholar 

  87. Yue, Y., Iwasaki, K., Chen, B., Dobashi, Y., Nishita, T.: Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media. ACM Trans. Graph. 29, 177 (2010)

    Google Scholar 

  88. Zaremba, S.: La discrépance isotrope et l’intégration numérique. Ann. Mat. Pura Appl. 87, 125–136 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author likes to thank Ian Sloan, Frances Kuo, Josef Dick, and Gareth Peters for the extraordinary opportunity to present this tutorial at the MCQMC 2012 conference and Pierre L’Ecuyer for the invitation to present an initial tutorial on “Monte Carlo and Quasi-Monte Carlo Methods in Computer Graphics” at MCQMC 2008. In addition, the author is grateful to the anonymous reviewers, Nikolaus Binder, and Ken Dahm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keller, A. (2013). Quasi-Monte Carlo Image Synthesis in a Nutshell. In: Dick, J., Kuo, F., Peters, G., Sloan, I. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer Proceedings in Mathematics & Statistics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41095-6_8

Download citation

Publish with us

Policies and ethics