Skip to main content

Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2000

Abstract

As opposed to Monte Carlo integration the quasi-Monte Carlo method does not allow for an error estimate from the samples used for the integral approximation and the deterministic error bound is not accessible in the setting of computer graphics, since usually the integrands are of unbounded variation. We investigate the application of randomized quasi-Monte Carlo integration to bidirectional path tracing yielding much more efficient algorithms that exploit low-discrepancy sampling and at the same time allow for variance estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Beck and W. Chen, Irregularities of Distribution, Cambridge University Press, 1987.

    Google Scholar 

  2. R. Cook, Stochastic Sampling in Computer Graphics, ACM Transactions on Graphics 5 (1986), no. 1, 51–72.

    Article  Google Scholar 

  3. R. Cranley and T. Patterson, Randomization of Number Theoretic Methods for Multiple Integration, SI AM Journal on Numerical Analysis 13 (1976), 904–914.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Faure, Good Permutations for Extreme Discrepancy, J. Number Theory 42 (1992), 47–56.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Friedel and A. Keller, Fast Generation of Randomized Low Discrepancy Point Sets, 2000, this volume.

    Google Scholar 

  6. A. Glassner, Principles of Digital Image Synthesis, Morgan Kaufmann, 1995.

    Google Scholar 

  7. E. Hlawka, Discrepancy and Riemann Integration, Studies in Pure Mathematics (L. Mirsky, ed.), Academic Press, New York, 1971, pp. 121–129.

    Google Scholar 

  8. A. Keller, Quasi-Monte Carlo Methods for Photorealistic Image Synthesis, Ph.D. thesis, Shaker, Aachen, 1998.

    Google Scholar 

  9. [Kel98b] —, The Quasi-Random Walk, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing 1996 (H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, eds.), Lecture Notes in Statistics, vol. 127, Springer, 1998, pp. 277–291.

    Google Scholar 

  10. E. Lafortune and Y. Willems, Bidirectional Path Tracing, Proc. 3rd International Conference on Computational Graphics and Visualization Techniques (Compugraphics), 1993, pp. 145–153.

    Google Scholar 

  11. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Pennsylvania, 1992.

    Book  MATH  Google Scholar 

  12. H. Niederreiter and C. Xing, H. Niederreiter, eds.), Cambridge University Press, 1996, 269–29

    Google Scholar 

  13. A. Owen, Randomly Permuted (t,m,s)-Nets and (t,s)-Sequences, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. Shiue, eds.), Lecture Notes in Statistics, vol. 106, Springer, 1995, pp. 299–317.

    Google Scholar 

  14. [Owe98a], Latin Supercube Sampling for Very High Dimensional Simulations, ACM Transactions on Modeling and Computer Simulation 8 (1998), 71–102.

    Google Scholar 

  15. [Owe98b]—, Monte Carlo Extension of Quasi-Monte Carlo, Winter Simulation Conference, IEEE Press, 1998, pp. 571–577.

    Google Scholar 

  16. A. Owen and Y. Zhou, Safe and Effective Importance Sampling, Tech. report, Stanford University, Goldman-Sachs, 1999.

    Google Scholar 

  17. G. Pirsic, A Soßware Implementation of Niederreit er-Xing Sequences, 2000, this volume.

    Google Scholar 

  18. P. Shirley, Physically Based Lighting Calculations for Computer Graphics, Ph.D. thesis, University of Illinois, Urbana-Champaign, 1990.

    Google Scholar 

  19. I. Sloan and S. Joe, Lattice Methods for Multiple Integration, Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  20. I. Sobol, A Primer for the Monte Carlo Method, CRC Press, 1994.

    Google Scholar 

  21. B. Tuffin, On the Use of Low Discrepancy Sequences in Monte Carlo Methods, Monte Carlo Methods and Applications 2 (1996), no. 4, 295–320.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Veach, Robust Monte Carlo Methods for Light Transport Simulation, Ph.D. thesis, Stanford University, December 1997.

    Google Scholar 

  23. E. Veach and L. Guibas, Bidirectional Estimators for Light Transport, Proc. 5th Eurographics Workshop on Rendering (Darmstadt, Germany), June 1994, pp. 147–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kollig, T., Keller, A. (2002). Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration. In: Fang, KT., Niederreiter, H., Hickernell, F.J. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56046-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56046-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42718-6

  • Online ISBN: 978-3-642-56046-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics