Skip to main content

Broadband Cavity-Enhanced Absorption Spectroscopy with Incoherent Light

  • Chapter
Cavity-Enhanced Spectroscopy and Sensing

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 179))

Abstract

Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The principle of measuring the cavity transmission directly to determine the loss inside a cavity was first implemented by O’Keefe [2] who used a pulsed cavity ring-down setup and named the approach “integrated cavity output spectroscopy” (ICOS). Besides CEAS as an acronym for cw applications, the abbreviation ICOS is also found in the literature.

  2. 2.

    The term “white light” will be used synonymously for “incoherent broadband over a certain spectral region”.

  3. 3.

    \(R(\lambda)=\sqrt{R_{1} R_{2}}\), where R 1,R 2 are the reflectivities of the individual cavity mirrors (Fig. 14.2).

  4. 4.

    High resolution spectra of the weak bX(1←0) transition of O2 at 14529 cm−1 and of the fifth overtone of the acetylene C–H stretch vibration at 18430 cm−1 are reported in [77] with a FWHM of 0.18 and 0.44 cm−1, respectively.

  5. 5.

    Note that the gases used (He and air) have large differences in their Rayleigh scattering cross sections.

  6. 6.

    An exception is the setup in Ref. [7] where interferometric processing of the signal was done before the cavity and the transmitted signal was measured immediately after the cavity by a photomultiplier tube.

  7. 7.

    The “instrumental/environmental” noise does not include systematic error sources and needs to be considered from experiment to experiment.

References

  1. T. Gherman, D. Romanini, Mode-locked cavity-enhanced absorption spectroscopy. Opt. Express 10, 1033–1042 (2002)

    ADS  Google Scholar 

  2. A. O’Keefe, Integrated cavity output analysis of ultra-weak absorption. Chem. Phys. Lett. 293, 331–336 (1998)

    ADS  Google Scholar 

  3. K.K. Lehmann, D. Romanini, The superposition principle and cavity ring-down spectroscopy. J. Chem. Phys. 105, 10263–10277 (1996)

    ADS  Google Scholar 

  4. S.M. Ball, R.L. Jones, Broad-band cavity ring-down spectroscopy. Chem. Rev. 103, 5239–5262 (2003)

    Google Scholar 

  5. S. Ball, R. Jones, Broadband cavity ring-down spectroscopy, in Cavity Ring Down Spectroscopy: Techniques and Applications, ed. by G. Berden, R. Engeln (Wiley, New York, 2009). ISBN: 978-1-4051-7688-0

    Google Scholar 

  6. S.M. Ball, I.M. Povey, E.G. Norton, R.L. Jones, Broadband cavity ring-down spectroscopy of the NO3 radical. Chem. Phys. Lett. 342, 113–120 (2001)

    ADS  Google Scholar 

  7. E. Hamers, D. Schram, R. Engeln, Fourier transform phase shift cavity ring down spectroscopy. Chem. Phys. Lett. 365, 237–243 (2002)

    ADS  Google Scholar 

  8. S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371, 284–294 (2003)

    ADS  Google Scholar 

  9. A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2554 (1988)

    ADS  Google Scholar 

  10. J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Broadband ringdown spectral photography. Appl. Opt. 40, 6725–6732 (2001)

    ADS  Google Scholar 

  11. I.M. Povey, A.M. South, A. t’Kint de Roodenbeke, C. Hill, R.A. Freshwater, R.L. Jones, A broadband lidar for the measurement of tropospheric constituent profiles from the ground. J. Geophys. Res. 103, 3369–3380 (1998)

    ADS  Google Scholar 

  12. M. Bitter, S.M. Ball, I.M. Povey, R.L. Jones, A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases. Atmos. Chem. Phys. 5, 2547–2560 (2005)

    ADS  Google Scholar 

  13. A. Saiz-Lopez et al., Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmos. Chem. Phys. 6, 883–895 (2006)

    ADS  Google Scholar 

  14. R.J. Leigh et al., Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff. Atmos. Chem. Phys. 10, 11823–11838 (2010)

    ADS  Google Scholar 

  15. G. Schmidl, W. Paa, W. Triebel, S. Schippel, H. Heyer, Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source. Appl. Opt. 48, 6754–6759 (2009)

    ADS  Google Scholar 

  16. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, L. Wöste, Towards supercontinuum cavity ring-down spectroscopy. Appl. Phys. B 94, 369–373 (2009)

    ADS  Google Scholar 

  17. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, L. Wöste, Cavity ring-down absorption spectrography based on filament-generated supercontinuum light. Opt. Express 17, 3673–3678 (2009)

    ADS  Google Scholar 

  18. S.S. Kiwanuka, T.K. Laurila, J.H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, C.F. Kaminski, Development of broadband cavity ring-down spectroscopy for biomedical diagnostics of liquid analytes. Anal. Chem. 84, 5489–5493 (2012)

    Google Scholar 

  19. J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, D.J. Benard, Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. Appl. Opt. 19, 144–147 (1980)

    ADS  Google Scholar 

  20. R. Engeln, G. von Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 262, 105–109 (1996)

    ADS  Google Scholar 

  21. S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids. Rev. Sci. Instrum. 76, 023107 (2005) [Erratum: Rev. Sci. Instrum. 76, 089901 (2005)]

    ADS  Google Scholar 

  22. S.E. Fiedler, A. Hese, U. Heitmann, Influence of the cavity parameters on the output intensity in incoherent broadband cavity-enhanced absorption spectroscopy. Rev. Sci. Instrum. 78, 073104 (2007)

    ADS  Google Scholar 

  23. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 16, 10178–10188 (2008)

    ADS  Google Scholar 

  24. M. Schnippering, P.R. Unwin, J. Hult, T. Laurila, C.F. Kaminski, J.M. Langridge, R.L. Jones, M. Mazurenka, S.R. Mackenzie, Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: a new probe of electrochemical processes. Electrochem. Commun. 10, 1827–1830 (2008)

    Google Scholar 

  25. K. Lynch, Incoherent broad-band cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins, Ph.D. thesis, Physics Department, University College, Cork, Ireland, 2008

    Google Scholar 

  26. A.A. Ruth, J. Orphal, S.E. Fiedler, Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46, 3611–3616 (2007)

    ADS  Google Scholar 

  27. M. Islam, L.N. Seetohul, Z. Ali, Liquid-phase broadband cavity-enhanced absorption spectroscopy measurements in a 2 mm cuvette. Appl. Spectrosc. 61, 649–658 (2007)

    ADS  Google Scholar 

  28. L.N. Seetohul, Z. Ali, M. Islam, Broadband cavity enhanced absorption spectroscopy as a detector for HPLC. Anal. Chem. 81, 4106–4112 (2009)

    Google Scholar 

  29. S.S. Kiwanuka, T. Laurila, C.F. Kaminski, Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation. Anal. Chem. 82, 7498–7501 (2010)

    Google Scholar 

  30. A.A. Ruth, K.T. Lynch, Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface adsorbed metalloporphyrins. Phys. Chem. Chem. Phys. 10, 7098–7108 (2008)

    Google Scholar 

  31. L. Van der Sneppen, G. Hancock, C. Kaminski, T. Laurila, S.R. Mackenzie, S.R.T. Neil, R. Peverall, G.A.D. Ritchie, M. Schnippering, P.R. Unwin, Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources. Analyst 135, 133–139 (2010)

    ADS  Google Scholar 

  32. A.T.M. Wilbers, G.M.W. Kroesen, C.J. Timmermans, D.C. Schram, The continuum emission of an arc plasma. J. Quant. Spectrosc. Radiat. Transf. 45, 1–10 (1991)

    ADS  Google Scholar 

  33. R.M. Varma, D.S. Venables, A.A. Ruth, U. Heitmann, E. Schlosser, S. Dixneuf, Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl. Opt. 48, B159–171 (2009)

    ADS  Google Scholar 

  34. B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to do Atomic Absorption Spectrometry (Wiley-VCH, New York, 2005)

    Google Scholar 

  35. J. Orphal, A.A. Ruth, High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source. Opt. Express 16, 19232–19243 (2008)

    ADS  Google Scholar 

  36. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008)

    Google Scholar 

  37. S.E. Fiedler, G. Hoheisel, A.A. Ruth, A. Hese, Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet. Chem. Phys. Lett. 382, 447–453 (2003)

    ADS  Google Scholar 

  38. D.S. Venables, T. Gherman, J. Orphal, J.C. Wenger, A.A. Ruth, High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy. Environ. Sci. Technol. 40, 6758–6763 (2006)

    ADS  Google Scholar 

  39. S. Vaughan, T. Gherman, A.A. Ruth, J. Orphal, Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO. Phys. Chem. Chem. Phys. 10, 4471–4477 (2008)

    Google Scholar 

  40. R.A. Washenfelder, A.O. Langford, H. Fuchs, S.S. Brown, Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer. Atmos. Chem. Phys. 8, 7779–7793 (2008)

    ADS  Google Scholar 

  41. S. Dixneuf, A.A. Ruth, S. Vaughan, R.M. Varma, J. Orphal, The time dependence of molecular iodine emission from Laminaria digitata. Atmos. Chem. Phys. 9, 823–829 (2009)

    ADS  Google Scholar 

  42. U. Nitschke, A.A. Ruth, S. Dixneuf, D.B. Stengel, Molecular iodine emission rates and photosynthetic performance of different thallus parts of Laminaria digitata (Phaeophyceae) during emersion. Planta 233, 737–748 (2011)

    Google Scholar 

  43. J. Chen, D.S. Venables, A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases. Atmos. Meas. Tech. 4, 425–436 (2011)

    Google Scholar 

  44. J. Chen, J.C. Wenger, D.S. Venables, Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity. J. Phys. Chem. A 115, 12235–12242 (2011)

    Google Scholar 

  45. A. Walsh, D. Zhao, H. Linnartz, Cavity enhanced plasma self-absorption spectroscopy. Appl. Phys. Lett. 101, 091111 (2012)

    ADS  Google Scholar 

  46. J.E. Thompson, H.D. Spangler, Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient. Appl. Opt. 45, 2465–2473 (2006)

    ADS  Google Scholar 

  47. C. Kern, S. Trick, B. Rippel, U. Platt, Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements. Appl. Opt. 45, 2077–2088 (2006)

    ADS  Google Scholar 

  48. S.M. Ball, J.M. Langridge, R.L. Jones, Broadband cavity enhanced absorption spectroscopy using light emitting diodes. Chem. Phys. Lett. 398, 68–74 (2004)

    ADS  Google Scholar 

  49. I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, D. Romanini, Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source. Appl. Phys. B 101, 661–669 (2010)

    ADS  Google Scholar 

  50. J.M. Langridge, S.M. Ball, R.L. Jones, A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes. Analyst 131, 916–922 (2006)

    ADS  Google Scholar 

  51. M. Triki, P. Cermak, G. Méjean, D. Romanini, Cavity-enhanced absorption spectroscopy with a red LED source for NO x trace analysis. Appl. Phys. B 91, 195–201 (2008)

    ADS  Google Scholar 

  52. T. Wu, W. Zhao, W. Chen, W. Zhang, X. Gao, Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode. Appl. Phys. B 94, 85–94 (2009)

    ADS  Google Scholar 

  53. S.M. Ball, A.M. Hollingsworth, J. Humbles, C. Leblanc, P. Potin, G. McFiggans, Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed. Atmos. Chem. Phys. 10, 6237–6254 (2010)

    ADS  Google Scholar 

  54. A.K. Benton, J.M. Langridge, S.M. Ball, W.J. Bloss, M. Dall’Osto, E. Nemitz, R.M. Harrison, R.L. Jones, Night-time chemistry above London: measurements of NO3 and N2O5 from the BT tower. Atmos. Chem. Phys. 10, 9781–9795 (2010)

    ADS  Google Scholar 

  55. U. Platt, J. Meinen, D. Pöhler, T. Leisner, Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections. Atmos. Meas. Tech. 2, 713–723 (2009)

    Google Scholar 

  56. R. Thalman, R. Volkamer, Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode. Atmos. Meas. Tech. 3, 1797–1814 (2010)

    Google Scholar 

  57. J. Meinen, J. Thieser, U. Platt, T. Leisner, Technical note: using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS. Atmos. Chem. Phys. 10, 3901–3914 (2010)

    ADS  Google Scholar 

  58. D.J. Hoch, J. Buxmann, H. Sihler, D. Pöhler, C. Zetzsch, U. Platt, A cavity-enhanced differential optical absorption spectroscopy instrument for measurement of BrO, HCHO, HONO and O3. Atmos. Meas. Tech. Discuss. 5, 3079–3115 (2012)

    Google Scholar 

  59. T. Gherman, D.S. Venables, S. Vaughan, J. Orphal, A.A. Ruth, Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2. Environ. Sci. Technol. 42, 890–895 (2008)

    ADS  Google Scholar 

  60. J.M. Roberts, P. Veres, C. Warneke, J.A. Neuman, R.A. Washenfelder, S.S. Brown, M. Baasandorj, J.B. Burkholder, I.R. Burling, T.J. Johnson, R.J. Yokelson, J. de Gouw, Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmos. Meas. Tech. Discuss. 3, 301–331 (2010)

    ADS  Google Scholar 

  61. T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, X. Gao, Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air. Appl. Phys. B 106, 501–509 (2012)

    ADS  Google Scholar 

  62. L.N. Seetohul, Z. Ali, M. Islam, Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell. Analyst 134, 1887–1895 (2009)

    ADS  Google Scholar 

  63. P.L. Kebabian, S.C. Herndon, A. Freedman, Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy. Anal. Chem. 77, 724–728 (2005)

    Google Scholar 

  64. P.L. Kebabian, E.C. Wood, S.C. Herndon, A. Freedman, A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy. Environ. Sci. Technol. 42, 6040–6045 (2008)

    ADS  Google Scholar 

  65. A.L. Gomez, R.F. Renzi, J.A. Fruetel, R.P. Bambha, Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples. Appl. Opt. 51, 2532–2540 (2012)

    ADS  Google Scholar 

  66. W. Denzer, M.L. Hamilton, G. Hancock, M. Islam, C.E. Langley, R. Peverall, G.A.D. Ritchie, Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode. Analyst 134, 2220–2223 (2009)

    ADS  Google Scholar 

  67. W. Denzer, G. Hancock, M. Islam, C.E. Langley, R. Peverall, G.A.D. Ritchie, D. Taylor, Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes. Analyst 136, 801–806 (2011) [Erratum: Analyst 136, 5308 (2011)]

    ADS  Google Scholar 

  68. C. Petermann, P. Fischer, Actively coupled cavity ringdown spectroscopy with low-power broadband sources. Opt. Express 19, 10164–10173 (2011)

    ADS  Google Scholar 

  69. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    ADS  Google Scholar 

  70. D.M. O’Leary, A.A. Ruth, S. Dixneuf, J. Orphal, R. Varma, The near infrared cavity-enhanced absorption spectrum of methylcyanide. J. Quant. Spectrosc. Radiat. Transf. 113, 1138–1147 (2012)

    ADS  Google Scholar 

  71. A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, P. Rairoux, Cavity ring-down spectrography. Opt. Commun. 191, 271–275 (2001)

    ADS  Google Scholar 

  72. J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Broadband ringdown spectral photography. Appl. Opt. 40, 6725–6732 (2001)

    ADS  Google Scholar 

  73. R. Engeln, G. Meijer, A Fourier transform cavity ring down spectrometer. Rev. Sci. Instrum. 67, 2708–2714 (1996)

    ADS  Google Scholar 

  74. E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70, 4–10 (1999)

    ADS  Google Scholar 

  75. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, Optomechanical shutter modulated broad-band cavity-enhanced absorption spectroscopy of molecular transients of astrophysical interest. J. Phys. Chem. A (2012). doi:10.1021/jp310392n

    Google Scholar 

  76. S.R.T. Neil, C.M. Rushworth, C. Vallance, S.R. Mackenzie, Broadband cavity-enhanced absorption spectroscopy for real time, in situ spectral analysis of microfluidic droplets. Lab Chip 11, 3953–3955 (2011)

    Google Scholar 

  77. P.S. Johnston, K.K. Lehmann, Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source. Opt. Express 16, 15013–15023 (2008)

    ADS  Google Scholar 

  78. K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Brewster angle prism retroreflectors for cavity enhanced spectroscopy. Appl. Opt. 48, 2966–2978 (2009)

    ADS  Google Scholar 

  79. M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes. Chem. Soc. Rev. 40, 207–220 (2011)

    Google Scholar 

  80. Y. Yao, J. Yao, V.K. Narasimhan, Z. Ruan, C. Xie, S. Fan, Y. Cui, Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 664 (2012). doi:10.1038/ncomms1664

  81. E.R. Ashu-Ayem, U. Nitschke, C. Monahan, J. Chen, S.B. Darby, P.D. Smith, C.D. O’Dowd, D.B. Stengel, D.S. Venables, Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments. Environ. Sci. Technol. 46, 10413–10421 (2012)

    ADS  Google Scholar 

  82. J.M. Langridge, S.M. Ball, A.J.L. Shillings, R.L. Jones, A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection. Rev. Sci. Instrum. 79, 123110 (2008)

    ADS  Google Scholar 

  83. O.J. Kennedy et al., An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2. Atmos. Meas. Tech. 4, 1759–1776 (2011)

    Google Scholar 

  84. H. Fuchs et al., Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmos. Meas. Tech. 3, 21–37 (2010)

    Google Scholar 

  85. H.P. Dorn et al., Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. Tech. Discuss. 6, 303–379 (2013)

    Google Scholar 

  86. C. Monahan, E.R. Ashu-Ayem, U. Nitschke, S.B. Darby, P.D. Smith, D.B. Stengel, D.S. Venables, C.D. O’Dowd, Coastal iodine emissions, part 2: chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I2. Environ. Sci. Technol. 46, 10422–10428 (2012)

    ADS  Google Scholar 

  87. R.S. Watt, T. Laurila, C.F. Kaminski, J. Hult, Cavity enhanced spectroscopy of high-temperature H2O in the near-infrared using a supercontinuum light source. Appl. Spectrosc. 63, 1389–1395 (2009)

    ADS  Google Scholar 

  88. T. Laurila, I.S. Burns, J. Hult, J.H. Miller, C.F. Kaminski, A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation. Appl. Phys. B 102, 271–278 (2011)

    ADS  Google Scholar 

  89. J.L. Axson, R.A. Washenfelder, T.F. Kahan, C.J. Young, V. Vaida, S.S. Brown, Absolute ozone cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K. Atmos. Chem. Phys. 11, 11581–11590 (2011)

    ADS  Google Scholar 

  90. M.J. Down, J. Tennyson, J. Orphal, P. Chelin, A.A. Ruth, Analysis of an 18O and D enhanced water spectrum and new assignments for HD18O and \(\mathrm {D}_{2}^{18}\mathrm{O}\) in the near-infrared region (6000–7000 cm−1) using newly calculated variational line lists. J. Mol. Spectrosc. 282, 1–8 (2012)

    ADS  Google Scholar 

  91. C.E. Miller, L.R. Brown, Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions. J. Mol. Spectrosc. 228, 329–354 (2004)

    ADS  Google Scholar 

  92. B. Ouyang, R.L. Jones, Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression. Appl. Phys. B 109, 581–591 (2012)

    ADS  Google Scholar 

  93. T. Gherman, S. Kassi, A. Campargue, D. Romanini, Overtone spectroscopy in the blue region by cavity-enhanced absorption spectroscopy with a mode-locked femtosecond laser: application to acetylene. Chem. Phys. Lett. 383, 353–358 (2004)

    ADS  Google Scholar 

  94. T. Gherman, D. Romanini, I. Sagnes, A. Garnache, Z. Zhang, Cavity-enhanced absorption spectroscopy with a mode-locked diode-pumped vertical external-cavity surface-emitting laser. Chem. Phys. Lett. 390, 290–295 (2004)

    ADS  Google Scholar 

  95. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B 80, 1027–1038 (2005)

    ADS  Google Scholar 

  96. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006)

    ADS  Google Scholar 

  97. M.J. Thorpe, F. Adler, K.C. Cossel, M.H.G. de Miranda, J. Ye, Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett. 468, 1–8 (2009)

    ADS  Google Scholar 

  98. K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B, Lasers Opt. 100, 917–924 (2010)

    ADS  Google Scholar 

  99. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Optical frequency comb spectroscopy. Faraday Discuss. 150, 23–31 (2011)

    ADS  Google Scholar 

  100. C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007)

    ADS  Google Scholar 

  101. B. Hardy, M. Raybaut, J.B. Dherbecourt, J.M. Melkonian, A. Godard, A.K. Mohamed, M. Lefebvre, Vernier frequency sampling: a new tuning approach in spectroscopy—application to multi-wavelength integrated path DIAL. Appl. Phys. B 107, 643–647 (2012)

    ADS  Google Scholar 

  102. P.K. Dasgupta, J.-S. Rhee, Optical cells with partially reflecting windows as nonlinear absorbance amplifiers. Anal. Chem. 59, 783–786 (1987)

    Google Scholar 

  103. J.M. Langridge, R.J. Gustafsson, P.T. Griffiths, R.A. Cox, R.M. Lambert, R.L. Jones, Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: a concern for air quality in urban areas? Atmos. Environ. 43, 5128–5131 (2009)

    ADS  Google Scholar 

  104. S. Nakao, Y. Liu, P. Tang, C.-L. Chen, J. Zhang, D.R. Cocker, Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake. Atmos. Chem. Phys. 12, 3927–3937 (2012)

    ADS  Google Scholar 

  105. W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, W. Zhang, Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445–480 nm. Anal. Chem. 85, 2260–2268 (2013)

    Google Scholar 

  106. P.L. Kebabian, W.A. Robinson, A. Freedman, Optical extinction monitor using CW cavity enhanced detection. Rev. Sci. Instrum. 78, 063102 (2007)

    ADS  Google Scholar 

  107. L. Biennier, F. Salama, M. Gupta, A. O’Keefe, Multiplex integrated cavity output spectroscopy of cold PAH cations. Chem. Phys. Lett. 387, 287–294 (2004)

    ADS  Google Scholar 

  108. A. Czyżewski, K. Ernst, G. Karasinski, H. Lange, P. Rairoux, W. Skubiszak, T. Stacewicz, Cavity ring-down spectroscopy for trace gas analysis. Acta Phys. Pol. B 33, 2255–2265 (2002)

    ADS  Google Scholar 

  109. A.J.L. Shillings, S.M. Ball, M.J. Barber, J. Tennyson, R.L. Jones, An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. Atmos. Chem. Phys. 11, 4273–4287 (2011)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by Science Foundation Ireland (11/RFP.1/PHY/3233), by the European Marie Curie Programme (FP7 IEF-302109, Alma Mater), and the IRCSET INSPIRE post-doc fellowship scheme cofounded by the FP7 Marie Curie programme (COFUND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ruth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruth, A.A., Dixneuf, S., Raghunandan, R. (2014). Broadband Cavity-Enhanced Absorption Spectroscopy with Incoherent Light. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_14

Download citation

Publish with us

Policies and ethics