Skip to main content

C 2-Cofinite \(\mathcal{W}\)-Algebras and Their Logarithmic Representations

  • Conference paper
Conformal Field Theories and Tensor Categories

Part of the book series: Mathematical Lectures from Peking University ((MLPKU))

Abstract

We discuss our recent results on the representation theory of \(\mathcal{W}\)-algebras relevant to Logarithmic Conformal Field Theory. First we explain some general constructions of \(\mathcal{W}\)-algebras coming from screening operators. Then we review the results on C 2-cofiniteness, the structure of Zhu’s algebras, and the existence of logarithmic modules for triplet vertex algebras. We propose some conjectures and open problems which put the theory of triplet vertex algebras into a broader context. New realizations of logarithmic modules for \(\mathcal{W}\)-algebras defined via screenings are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    n.b. For brevity, we shall often use “algebra” and “vertex algebra” when we mean “superalgebra” and “vertex superalgebra”, respectively. From the context it should be clear whether the adjective “super” is needed.

  2. 2.

    Without the linear term the central charge would be \(\operatorname{rank}(L)\).

  3. 3.

    Here for simplicity we assume strong rationality, meaning that for a given VOA every (weak) module is completely reducible.

References

  1. Abe, T.: A Z 2-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abe, T., Buhl, G., Dong, C.: Rationality, regularity and C 2-cofiniteness. Trans. Am. Math. Soc. 356, 3391–3402 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270, 115–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adamovic, D., Milas, A.: On the triplet vertex algebra W(p). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamovic, D., Milas, A.: The N=1 triplet vertex operator superalgebras: twisted sector. SIGMA 4, 087 (2008)

    MathSciNet  Google Scholar 

  6. Adamovic, D., Milas, A.: The N=1 triplet vertex operator superalgebras. Commun. Math. Phys. 288, 225–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adamovic, D., Milas, A.: An analogue of modular BPZ equation in logarithmic conformal field theory. Contemp. Math. 497, 1–17 (2009)

    Article  MathSciNet  Google Scholar 

  8. Adamovic, D., Milas, A.: Lattice construction of logarithmic modules for certain vertex algebras. Sel. Math. New Ser. 15(4), 535–561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adamovic, D., Milas, A.: On W-algebras associated to (2,p) minimal models and their representations. Int. Math. Res. Not. 2010, 3896–3934 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Adamovic, D., Milas, A.: The structure of Zhu’s algebras for certain W-algebras. Adv. Math. 227, 2425–2456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Adamovic, D., Milas, A.: On W-algebra extensions of (2,p) minimal models: p>3. J. Algebra 344, 313–332 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Adamovic, D., Milas, A.: An explicit realization of logarithmic modules for the vertex operator algebra \(\mathcal{W}_{p,p'}\). J. Math. Phys. 53, 073511 (2012)

    Article  MathSciNet  Google Scholar 

  13. Adamovic, D., Milas, A.: The doublet vertex operator algebra \(\mathcal{A}(p)\) and \(\mathcal{A}_{2,p}\). Contemp. Math. 602 (2013)

    Google Scholar 

  14. Arakawa, T.: Representation theory of W-algebras. Invent. Math. 169, 219–320 (2007). arXiv:math/0506056

    Article  MathSciNet  MATH  Google Scholar 

  15. Arike, Y., Nagatomo, A.: Some remarks on pseudo-trace functions for orbifold models associated with symplectic fermions. Preprint. arXiv:1104.0068

  16. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  MathSciNet  Google Scholar 

  17. Carqueville, N., Flohr, M.: Nonmeromorphic operator product expansion and C 2-cofiniteness for a family of W-algebras. J. Phys. A, Math. Gen. 39, 951 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chappell, T., Lascoux, A., Warnaar, S., Zudilin, W.: Logarithmic and complex constant term identities. arXiv:1112.3130

  19. Creutzig, T., Ridout, D.: Relating the archetypes of logarithmic conformal field theory. arXiv:1107.2135

  20. de Boer, J., Tjin, T.: Quantization and representation theory of finite W-algebras. Commun. Math. Phys. 158, 485–516 (1993)

    Article  MATH  Google Scholar 

  21. De Sole, A., Kac, V.: Finite vs. affine W-algebras. Jpn. J. Math. 1, 137–261 (2006). arXiv:math-ph/0511055

    Article  MathSciNet  MATH  Google Scholar 

  22. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 160, 245–265 (1993)

    Article  Google Scholar 

  23. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  24. Feigin, B., Stoyanovsky, A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold. arXiv:hep-th/9308079

  25. Feigin, B., Tipunin, I.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047

  26. Feigin, B., Feigin, E., Littelmann, P.: Zhu’s algebras, C 2-algebras and abelian radicals. J. Algebra 329(1), 130–146 (2011). arXiv:0907.3962

    Article  MathSciNet  MATH  Google Scholar 

  27. Feigin, B.L., Gaĭnutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: The Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theories. Teor. Mat. Fiz. 148(3), 398–427 (2006) (Russian)

    Article  Google Scholar 

  28. Feigin, B.L., Gaĭnutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B 757, 303–343 (2006)

    Article  MATH  Google Scholar 

  29. Feigin, B.L., Gaĭnutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)

    Article  MATH  Google Scholar 

  30. Feigin, E., Littelmann, P.: Zhu’s algebra and the C 2-algebra in the symplectic and the orthogonal cases. J. Phys. A, Math. Theor. 43, 135206 (2010). arXiv:0911.2957v1

    Article  MathSciNet  Google Scholar 

  31. Fjelstad, J., Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Y.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379–413 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Flohr, M.: On modular invariant partition functions of conformal field theories with logarithmic operators. Int. J. Mod. Phys. A 11(22), 4147–4172 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Flohr, M., Grabow, A., Koehn, R.: Fermionic expressions for the characters of c(p,1) logarithmic conformal field theories. Nucl. Phys. B 768, 263–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. Am. Math. Soc., Providence (2001)

    Book  MATH  Google Scholar 

  35. Frenkel, E., Kac, V., Wakimoto, M.: Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys. 147, 295–328 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Frenkel, E., Kac, V., Radul, A., Wang, W.: W 1+∞ and W(gl N ) with central charge N. Commun. Math. Phys. 170, 337–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Appl. Math., vol. 134. Academic Press, New York (1988)

    MATH  Google Scholar 

  38. Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104 (1993)

    Google Scholar 

  39. Fuchs, J.: On non-semisimple fusion rules and tensor categories. Contemp. Math. 442, 315–337 (2007)

    Article  Google Scholar 

  40. Fuchs, J., Schweigert, C.: Hopf algebras and finite tensor categories in conformal field theory. Rev. Unión Mat. Argent. 51, 43–90 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Y.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247(3), 713–742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gaberdiel, M., Gannon, T.: Zhu’s algebra, the C 2-algebra, and twisted modules. Contemp. Math. 497, 65–78 (2009)

    Article  MathSciNet  Google Scholar 

  43. Gaberdiel, M., Runkel, I.: From boundary to bulk in logarithmic CFT. J. Phys. A 41, 075402 (2008)

    Article  MathSciNet  Google Scholar 

  44. Gaberdiel, M., Runkel, I., Wood, S.: Fusion rules and boundary conditions in the c=0 triplet model. J. Phys. A, Math. Theor. 42, 325–403 (2009). arXiv:0905.0916

    MathSciNet  Google Scholar 

  45. Gaberdiel, M., Runkel, I., Wood, S.: A modular invariant bulk theory for the c=0 triplet model. J. Phys. A, Math. Theor. 44, 015204 (2011). arXiv:1008.0082v1

    Article  MathSciNet  Google Scholar 

  46. Huang, Y.-Z.: Cofiniteness conditions, projective covers and the logarithmic tensor product theory. J. Pure Appl. Algebra 213, 458–475 (2009). arXiv:0712.4109

    Article  MathSciNet  MATH  Google Scholar 

  47. Huang, Y.-Z.: Generalized twisted modules associated to general automorphisms of a vertex operator algebra. Preprint. arXiv:0905.0514

  48. Huang, Y.-Z., Kong, L.: Full field algebras. Commun. Math. Phys. 272, 345–396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, Y.-Z., Kong, L.: Modular invariance for conformal full field algebras. Trans. Am. Math. Soc. 362, 3027–3067 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Huang, Y.-Z., Li, H., Lepowsky, J., Zhang, L.: On the concepts of intertwining operator and tensor product module in vertex operator algebra theory. J. Pure Appl. Algebra 204, 507–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Huang, Y.-Z., Lepowsky, J., Zhang, L.: Logarithmic tensor product theory for generalized modules for a conformal vertex algebra. arXiv:0710.2687 (also Parts I–VIII: arXiv:1012.4193, arXiv:1012.4196, arXiv:1012.4197, arXiv:1012.4198, arXiv:1012.4199, arXiv:1012.4202, arXiv:1110.1929, arXiv:1110.1931)

  52. Kac, V., Wang, W.: Superconformal vertex operator superalgebras and their representations. Contemp. Math. 175, 161–191 (1994)

    Article  MathSciNet  Google Scholar 

  53. Knopp, M., Mason, G.: Logarithmic vector-valued modular forms. arXiv:0910.3976

  54. Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Birkhäuser, Boston (2003)

    Google Scholar 

  55. Li, H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Li, H.: The physics superselection principle in vertex operator algebra theory. J. Algebra 196, 436–457 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  57. Milas, A.: Weak modules and logarithmic intertwining operators for vertex operator algebras. Contemp. Math. 297, 201–225 (2002)

    Article  MathSciNet  Google Scholar 

  58. Milas, A.: Fusion rings associated to degenerate minimal models. J. Algebra 254, 300–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Milas, A.: Logarithmic intertwining operators and vertex operators. Commun. Math. Phys. 277, 497–529 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and W-algebras. N.Y. J. Math. 18, 621–650 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Miyamoto, M.: Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122, 51–91 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Miyamoto, M.: Flatness of tensor products and semi-rigidity for C 2-cofinite vertex operator algebras I. arXiv:0906.1407

  63. Nagatomo, K., Tsuchiya, A.: The triplet vertex operator algebra W(p) and the restricted quantum group at root of unity. In: Exploring New Structures and Natural Constructions in Mathematical Physics. Adv. Stud. Pure Math., vol. 61, pp. 1–49. Math. Soc. Japan, Tokyo (2011). arXiv:0902.4607

    Google Scholar 

  64. Tsuchiya, A., Kanie, Y.: Fock space representations of the Virasoro algebra—intertwining operators. Publ. Res. Inst. Math. Sci. 22, 259–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang, W.: Classification of irreducible modules of W 3 algebra with c=−2. Commun. Math. Phys. 195, 113–128 (1998)

    Article  MATH  Google Scholar 

  66. Wang, W.: Nilpotent orbits and finite W-algebras. Fields Inst. Commun. 59, 71–105 (2011)

    Google Scholar 

  67. Wood, S.: Fusion rules of the W p,q triplet models. J. Phys. A 43(4), 045212 (2010)

    Article  MathSciNet  Google Scholar 

  68. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This note is based on lectures given by the authors at the conference on “Tensor Categories and Conformal Field Theory”, June 2011, Beijing. Thus, except for Sect. 5 and some constructions in Sect. 2, all the material is based on earlier works by the authors (we should say that some constructions in Sect. 2 were independently introduced in [25]). We are indebted to the organizers for invitation to this wonderful conference. We also thank A. Semikhatov, A. Gaĭnutdinov, A. Tsuchiya, I. Runkel, Y. Arike, J. Lepowsky, L. Kong and Y.-Z. Huang for the interesting discussion during and after the conference. We are also grateful to Jinwei Yang for helping us around in Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dražen Adamović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adamović, D., Milas, A. (2014). C 2-Cofinite \(\mathcal{W}\)-Algebras and Their Logarithmic Representations. In: Bai, C., Fuchs, J., Huang, YZ., Kong, L., Runkel, I., Schweigert, C. (eds) Conformal Field Theories and Tensor Categories. Mathematical Lectures from Peking University. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39383-9_6

Download citation

Publish with us

Policies and ethics