Skip to main content

Chiral Magnetic Effect in Hydrodynamic Approximation

  • Chapter
Strongly Interacting Matter in Magnetic Fields

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

We review derivations of the chiral magnetic effect (ChME) in hydrodynamic approximation. The reader is assumed to be familiar with the basics of the effect. The main challenge now is to account for the strong interactions between the constituents of the fluid. The main result is that the ChME is not renormalized: in the hydrodynamic approximation it remains the same as for non-interacting chiral fermions moving in an external magnetic field. The key ingredients in the proof are general laws of thermodynamics and the Adler-Bardeen theorem for the chiral anomaly in external electromagnetic fields. The chiral magnetic effect in hydrodynamics represents a macroscopic manifestation of a quantum phenomenon (chiral anomaly). Moreover, one can argue that the current induced by the magnetic field is dissipation free and talk about a kind of “chiral superconductivity”. More precise description is a quantum ballistic transport along magnetic field taking place in equilibrium and in absence of a driving force. The basic limitation is the exact chiral limit while temperature—excitingly enough—does not seemingly matter. What is still lacking, is a detailed quantum microscopic picture for the ChME in hydrodynamics. Probably, the chiral currents propagate through lower-dimensional defects, like vortices in superfluid. In case of superfluid, the prediction for the chiral magnetic effect remains unmodified although the emerging dynamical picture differs from the standard one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The review is prepared for a volume of the Springer Lecture Notes in Physics “Strongly interacting matter in magnetic fields” edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee.

  2. 2.

    In the realistic QCD case the singlet axial current is anomalous and is not conserved. Therefore, introduction of the chemical potential μ 5 is rather a subtle issue. In the bulk of the text we ignore this problem concentrating mostly on academic issues. One could have in mind, for example, that the chemical potential μ 5≠0 is associated in fact with the axial current with isospin ΔI=1 which is conserved in the limit of vanishing quark masses. Another possible line of reasoning is to invoke large-N c limit of Yang-Mills theories. The contribution of the gluon anomaly is then suppressed by large N c and the chemical potential μ 5 can be introduced consistently for the singlet current as well.

  3. 3.

    To compare (11.9) and (11.7) one should keep in mind that in the notations of Ref. [24] the current j in (11.9) is the current of right-handed fermions alone and, thus, constitutes one half of the chiral current entering (11.7).

  4. 4.

    Note that in the underlying fundamental field theory there are no anomalies associated with a non-vanishing chemical potential μ. This observation is in no contradiction with the fact that such anomalies do arise in the language of the effective theory.

  5. 5.

    Alternatively, this counting can be considered as a proof of the possibility to introduce the Landau gauge (11.5).

  6. 6.

    We could have defined anomaly in such a way that it does not contribute to μ j μ. However, in the presence of both chemical potentials μ and μ 5 there is no physical motivation for such a regularization.

  7. 7.

    The author is thankful to L. Stodolsky for a detailed discussion of the subject.

  8. 8.

    This subsection is of rather technical nature and can be considered as an appendix. Moreover, the presentation is close to that of Ref. [23], with a substitution A i i ϕ.

References

  1. E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma? Nucl. Phys. A 750, 64–83 (2005). arXiv:hep-ph/0405066 [hep-ph]

    Article  ADS  Google Scholar 

  2. D. Teaney, J. Laure, E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC. arXiv:nucl-th/0110037 [nucl-th]

  3. D.E. Kharzeev, Parity violation in hot QCD: why it can happen, and how to look for it. Phys. Lett. B 633, 260–264 (2006). arXiv:0406125 [hep-ph]

    Article  ADS  Google Scholar 

  4. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 803, 227–253 (2008). arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev, H.J. Warringa, The chiral magnetic effect. Phys. Rev. D 78, 074033 (2008). arXiv:0808.3382 [hep-ph]

    Article  ADS  Google Scholar 

  6. G. Basar, C.V. Dunne, The chiral magnetic effect and axial anomalies. arXiv:1207.4199 [hep-th]

  7. D.E. Kharzeev, The chiral magnetohydrodynamics of QCD fluid at RHIC and LHC. J. Phys. G 38, 124061 (2011). arXiv:1107.4004 [hep-ph]

    Article  ADS  Google Scholar 

  8. A. Vilenkin, Equilibrium parity violating current in a magnetic field. Phys. Rev. D 22, 3080 (1980)

    Article  ADS  Google Scholar 

  9. H.B. Nielsen, M. Ninomiya, Adler-Bell-Jackiw anomaly and Weyl fermions in crystal. Phys. Lett. 130B, 389 (1983)

    MathSciNet  ADS  Google Scholar 

  10. S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969)

    Article  ADS  Google Scholar 

  11. J.S. Bell, R. Jackiw, A PCAC puzzle: π0→γγ in the sigma model. Nuovo Cimento A 60, 47–61 (1969)

    Article  ADS  Google Scholar 

  12. S.L. Adler, W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation. Phys. Rev. 182, 1517 (1969)

    Article  ADS  Google Scholar 

  13. D.T. Son, Hydrodynamics of relativistic systems with broken continuous symmetries. Int. J. Mod. Phys. A 16S1C, 1284 (2001)

    Article  Google Scholar 

  14. S. Dubovsky, L. Hui, A. Nicolis, D.T. Son, Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion. Phys. Rev. D 85, 085029 (2012). arXiv:1107.0731 [hep-th]

    Article  ADS  Google Scholar 

  15. D.T. Son, P. Surowka, Hydrodynamics with triangle anomalies. Phys. Rev. Lett. 103, 191601 (2009). arXiv:0906.5044 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  16. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Fluid Mechanics, vol. 6, 2nd edn. ISBN 978-0-08-033933-7

    Google Scholar 

  17. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla, T. Sharma, Constraints on fluid dynamics from equilibrium partition functions. arXiv:1203.3544 [hep-th]

  18. K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz, A. Yarom, Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 109, 101601 (2012). arXiv:1203.3556 [hep-th]

    Article  ADS  Google Scholar 

  19. K. Jensen, Triangle anomalies, thermodynamics, and hydrodynamics. arXiv:1203.3599 [hep-th]

  20. A.Yu. Alekseev, V.V. Cheianov, J. Frohlich, Universality of transport properties in equilibrium, Goldstone theorem and chiral anomaly. Phys. Rev. Lett. 81, 3503–3506 (1998). arXiv:9803346 [cond-mat]

    Article  ADS  Google Scholar 

  21. J. Erdmenger, M. Haack, M. Kaminski, A. Yarom, Fluid dynamics of R-charged black holes. J. High Energy Phys. 0901, 055 (2009). arXiv:0809.2488 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  22. D.T. Son, A.R. Zhitnitsky, Quantum anomalies in dense matter. Phys. Rev. D 70, 074018 (2004). arXiv:0405216 [hep-ph]

    Article  ADS  Google Scholar 

  23. M.A. Metlitski, A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter. Phys. Rev. D 72, 045011 (2005). arXiv:0505072 [hep-ph]

    Article  ADS  Google Scholar 

  24. A. Vilenkin, Macroscopic parity violating effects: neutrino fluxes from rotating black holes and in rotating thermal radiation. Phys. Rev. D 20, 1807 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Golkar, D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient. arXiv:1207.5806 [hep-th]

  26. D. Hou, H. Liu, H.-c. Ren, A possible higher order correction to the vortical conductivity in a gauge field plasma. Phys. Rev. D 86, 121703(R) (2012). arXiv:1210.0969 [heh-th]

    ADS  Google Scholar 

  27. S.R. Coleman, B.R. Hill, No more corrections to the topological mass term in QED in three-dimensions. Phys. Lett. B 159, 184 (1985)

    Article  ADS  Google Scholar 

  28. M. Lublinsky, I. Zahed, Anomalous chiral superfluidity. Phys. Lett. B 684, 119–122 (2010). arXiv:0910.1373 [hep-th]

    Article  ADS  Google Scholar 

  29. M.I. Isachenkov, A.V. Sadofyev, The chiral magnetic effect in hydrodynamical approach. Phys. Lett. B 697, 404–406 (2011). arXiv:1010.1550 [hep-th]

    Article  ADS  Google Scholar 

  30. A.V. Sadofyev, V.I. Shevchenko, V.I. Zakharov, Notes on chiral hydrodynamics within effective theory approach. Phys. Rev. D 83, 105025 (2011). arXiv:1012.1958 [hep-th]

    Article  ADS  Google Scholar 

  31. M. Stone (ed.), The Quantum Hall Effect (World Scientific, Singapore, 1992)

    Google Scholar 

  32. T. Kimura, Hall and spin Hall viscosity ratio in topological insulators. arXiv:1004.2688 [cond-mat.mes-hall]

  33. D.E. Kharzeev, H.-Y. Yee, Anomalies and time reversal invariance in relativistic hydrodynamics: the second order and higher dimensional formulations. Phys. Rev. D 84, 045025 (2011). arXiv:1105.6360 [hep-th]

    Article  ADS  Google Scholar 

  34. J. Goldstone, F. Wilczek, Fractional quantum numbers on solitons. Phys. Rev. Lett. 47, 986–989 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  35. C.G. Callan, J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls. Nucl. Phys. B 250, 427 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  36. V.P. Kirilin, A.V. Sadofyev, V.I. Zakharov, Chiral vortical effect in superfluid. Phys. Rev. D 86, 025021 (2012). arXiv:1203.6312 [hep-th]

    Article  ADS  Google Scholar 

  37. K. Landsteiner, L. Melgar, Holographic flow of anomalous transport coefficients. arXiv:1206.4440 [hep-th]

  38. Y. Neiman, Y. Oz, Relativistic Hydrodynamics with general anomalous charges. J. High Energy Phys. 1103, 023 (2011). arXiv:1011.5107 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  39. D.E. Kharzeev, H.J. Warringa, Chiral magnetic conductivity. Phys. Rev. D 80, 034028 (2009). arXiv:0907.5007 [hep-ph]

    Article  ADS  Google Scholar 

  40. K. Landsteiner, E. Megias, F. Pena-Benitez, Anomalies and transport coefficients: the chiral gravito-magnetic effect. arXiv:1110.3615 [hep-ph]

  41. L.P. Pitaevskii, E.M. Lifshitz, Statistical Physics, part 2, vol. 9, 1st edn. (Butterworth-Heinemann, Oxford, 1980). ISBN 978-0-7506-2636-1

    Google Scholar 

  42. K. Jensen, R. Loganayagam, A. Yarom, Thermodynamics, gravitational anomalies and cones. arXiv:1207.5824 [hep-th]

  43. R. Jackiw, S. Templeton, How super-renormalizable interactions cure their infrared divergences. Phys. Rev. D 23, 2291–2304 (1981)

    Article  ADS  Google Scholar 

  44. S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories. Ann. Phys. 140, 372–411 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  45. D.J. Gross, R.D. Pisarski, L.G. Yaffe, QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  46. A.A. Anselm, A.A. Johansen, Radiative corrections to the axial anomaly. JETP Lett. 49, 214–218 (1989)

    ADS  Google Scholar 

  47. E. Witten, Global aspects of current algebra. Nucl. Phys. B 223, 422–432 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:0405231 [hep-th]

    Article  ADS  Google Scholar 

  49. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Real-time dynamics of the chiral magnetic effect. Phys. Rev. Lett. 104, 212001 (2010). arXiv:1002.2495 [hep-ph]

    Article  ADS  Google Scholar 

  50. H.J. Warringa, Dynamics of the chiral magnetic effect in a weak magnetic field. arXiv:1205.5679 [hep-th]

  51. E. Witten, Cosmic superstrings. Phys. Lett. B 153, 243 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  52. D.T. Son, M.A. Stephanov, QCD at finite isospin density: from pion to quark–anti-quark condensation. Phys. At. Nucl. 64, 834–842 (2001). arXiv:0011365 [hep-ph]

    Article  Google Scholar 

  53. H. Leutwyler, On the foundations of chiral perturbation theory. Ann. Phys. 235, 165–203 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Nicolis, Low-energy effective field theory for finite-temperature relativistic superfluids. arXiv:1108.2513 [hep-th]

  55. Y. Aharonov, A. Casher, The ground state of a spin 1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19, 2461–2462 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  56. A.J. Niemi, G.W. Semenoff, Fermion number fractionization in quantum field theory. Phys. Rept. 135, 99 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  57. D.E. Kharzeev, H.-U. Yee, Chiral magnetic wave. Phys. Rev. D 83, 085007 (2011). arXiv:1012.6026 [hep-th]

    Article  ADS  Google Scholar 

  58. V. Shevchenko, Quantum measurements and chiral magnetic effect. arXiv:1208.0777 [hep-th]

  59. F.V. Gubarev, S.M. Morozov, M.I. Polikarpov, V.I. Zakharov, Evidence for fine tuning of fermionic modes in lattice gluodynamics. JETP Lett. 82, 343–349 (2005). arXiv:0505016 [hep-lat]

    Article  ADS  Google Scholar 

  60. V.I. Zakharov, Dual string from lattice Yang-Mills theory. AIP Conf. Proc. 756, 182–191 (2005). arXiv:0501011 [hep-ph]

    Article  ADS  Google Scholar 

  61. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3+1)-dimensions. Phys. Lett. B 349, 477–483 (1995). arXiv:9412257 [hep-ph]

    Article  ADS  Google Scholar 

  62. M.N. Chernodub, H. Verschelde, V.I. Zakharov, Two-component liquid model for the quark-gluon plasma. Theor. Math. Phys. 170, 211–216 (2012). arXiv:1007.1879 [hep-ph]

    Article  Google Scholar 

  63. H. Verschelde, V.I. Zakharov, Two-component quark-gluon plasma in stringy models. AIP Conf. Proc. 1343, 137–139 (2011). arXiv:1012.4821 [hep-th]

    Article  ADS  Google Scholar 

  64. T. Kalaydzhyan, Chiral superfluidity of the quark-gluon plasma. arXiv:1208.0012 [hep-ph]

  65. K.A. Milton, Van der Waals and Casimir-Polder forces. arXiv:1101.2238 [cond-mat.mes-hall]

  66. D.T. Son, B.Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals. arXiv:1206.1627 [cond-mat.mes-hall]

  67. I. Zahed, Anomalous chiral Fermi surface. Phys. Rev. Lett. 109, 091603 (2012). arXiv:1204.1955 [hep-th]

    Article  ADS  Google Scholar 

  68. D.T. Son, N. Yamamoto, Berry Curvature, triangle anomalies, and chiral magnetic effect in Fermi liquids. Phys. Rev. Lett. 109, 181602 (2012). arXiv:1203.2697 [cond-mat.mes-hall]

    Article  ADS  Google Scholar 

  69. E.V. Gorba, V.A. Miransky, I.A. Shovkovy, Surprises in relativistic matter in a magnetic field. Prog. Part. Nucl. Phys. 67, 547–551 (2012). arXiv:1111.3401 [hep-ph]

    Article  ADS  Google Scholar 

  70. D.E. Kharzeev, H.-U. Yee, Chiral electronics. arXiv:1207.0477 [cond-mat.mes-hall]

Download references

Acknowledgements

The author is grateful to T. Kalaydzhyan, D.E. Kharzeev, V.P Kirilin, A.V. Sadofyev, V.I. Shevchenko, L. Stodolsky and H. Verschelde for illuminating discussions. The work of the author was partially supported by grants PICS-12-02-91052, FEBR-11-02-01227-a and by the Federal Special-Purpose Program “Cadres” of the Russian Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin I. Zakharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zakharov, V.I. (2013). Chiral Magnetic Effect in Hydrodynamic Approximation. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_11

Download citation

Publish with us

Policies and ethics