Skip to main content
Log in

Two-component liquid model for the quark-gluon plasma

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss a two-component liquid model for the quark-gluon plasma. We show that the model explains the basic experimental observations of the plasma properties naturally on the qualitative level. From the standpoint of the dynamics, the model assumes the existence of an effective scalar field with a nonzero vacuum expectation value. The hypothesis that such a condensate exists is supported by lattice data. We formulate the kind of lattice data that would yield a possible verification of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Shuryak, Nucl. Phys. A, 750, 64–83 (2005); arXiv:hep-ph/0405066v1 (2004); T. Schäfer and D. Teaney, Rept. Prog. Phys., 72, 126001 (2009); arXiv:0904.3107v2 [hep-ph] (2009); D. Teaney, Prog. Part. Nucl. Phys., 62, 451–461 (2009).

    Article  ADS  Google Scholar 

  2. S. A. Hartnoll, Class. Q. Grav., 26, 224002 (2009); arXiv:0903.3246v3 [hep-th] (2009).

    Article  MathSciNet  ADS  Google Scholar 

  3. M. N. Chernodub, H. Verschelde, and V. I. Zakharov, Nucl. Phys. B (Proc. Suppl.), 207–208, 325–328 (2010); arXiv:0905.2520v1 [hep-ph] (2009).

    Article  Google Scholar 

  4. M. Luzum and P. Romatschke, Phys. Rev. C, 78, 034915 (2008); Erratum, 79, 039903 (2009); arXiv: 0804.4015v4 [nucl-th] (2008).

    Article  ADS  Google Scholar 

  5. P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett., 94, 111601 (2005); arXiv:hep-th/0405231v2 (2004).

    Article  ADS  Google Scholar 

  6. C. H. Lees, Phil. Mag., 6, 128–147 (1901); L. A. Utracki, Polymer Blends Handbook, Springer, New York (2003).

    Google Scholar 

  7. S. Koh, “The onset of superfluidity in capillary flow of liquid helium 4,” arXiv:0808.4030v2 [cond-mat.supr-con] (2008).

  8. D. T. Son, Internat. J. Mod. Phys. A., 16S1C, 1284–1286 (2001); arXiv:hep-ph/0011246v1 (2000).

    Article  Google Scholar 

  9. J. J. Atick and E. Witten, Nucl. Phys. B, 310, 291–334 (1988); B. Sathiapalan, Phys. Rev. D, 35, 3277–3279 (1987); Ya. I. Kogan, JETP Lett., 45, 709–712 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Kruczenski and A. Lawrence, JHEP, 0607, 031 (2006); arXiv:hep-th/0508148v2 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. S. Gorsky, V. I. Zakharov, and A. R. Zhitnitsky, Phys. Rev. D, 79, 106003 (2009); arXiv:0902.1842v1 [hep-ph] (2009).

    Article  ADS  Google Scholar 

  12. M. N. Chernodub, A. Nakamura, and V. I. Zakharov, “Deconfinement phase transition in mirror of symmetries,” arXiv:0904.0946v1 [hep-ph] (2009).

  13. C. P. Herzog and A. Yarom, Phys. Rev. D, 80, 106002 (2009); arXiv:0906.4810v1 [hep-th] (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Chernodub.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 170, No. 2, pp. 258–264, February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernodub, M.N., Verschelde, H. & Zakharov, V.I. Two-component liquid model for the quark-gluon plasma. Theor Math Phys 170, 211–216 (2012). https://doi.org/10.1007/s11232-012-0023-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0023-8

Keywords

Navigation