Skip to main content

Topochemical and Electron Microscopic Analyses on the Lignification of Individual Cell Wall Layers During Wood Formation and Secondary Changes

  • Chapter
  • First Online:
Cellular Aspects of Wood Formation

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

The topochemical distribution of lignin and phenolic extractives in wood cell walls is determined on a cellular level by using scanning UV microspectrophotometry (UMSP) and transmission electron microscopy (TEM). These improved cellular analytical techniques enable direct imaging of the lignin distribution within individual cell wall layers during wood formation and secondary changes. The UMSP technique is based on the ultraviolet illumination of semithin transverse sections which can be related semiquantitatively to the concentration of lignin. Electron microscopy is variously used to obtain high-resolution information on the lignin distribution in wood cell walls which can be visualised by staining with potassium permanganate (KMnO4). By applying these improved techniques, (1) the topochemistry of lignification in developing xylem and wood tissue after wounding, (2) the topochemical detection of phenolic extractives, and (3) the lignin distribution in tropical bamboo species are presented and illustrated in detail. The described methods and presented results demonstrate that cellular UV microspectrophotometry and electron microscopy are ideally suited to study the topochemical distribution of lignin and phenolic extractives on a subcellular level. In particular, the application of the UV-scanning technique enables a direct imaging of lignin distribution (geometrical resolution of 0.25 μm × 0.25 μm) and provides fundamental information on the topochemistry of lignification. The techniques can be used for a wide range of applications in wood biology and wood topochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Brändström J (2001) Micro- and ultrastructural aspects of Norway spruce tracheids: a review. IAWA J 22:333–353

    Google Scholar 

  • Ĉufar K, Gričar J, Zupančič M, Koch G, Schmitt U (2008) Anatomy, cell wall structure and topochemistry of water-logged archaeological wood aged 5,200 and 4,500 years. IAWA J 29:55–68

    Google Scholar 

  • Daniel G, Duchesne I, Tokoh C, Bardage S (2004) The surface and intracellular nanostructure of wood fibres: electron microscope methods and applications. In: Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 87–104

    Google Scholar 

  • Dean JFD, Eriksson KE (1994) Laccase and the deposition of lignin in vascular plants. Holzforschung 48:21–33

    Article  CAS  Google Scholar 

  • Donaldson L (1992) Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull ns 13:381–387

    Google Scholar 

  • Donaldson L (2001) Lignification and lignin topochemistry – an ultrastructural view. Phytochemistry 57:859–873

    Article  PubMed  CAS  Google Scholar 

  • Donaldson L, Ryan KG (1987) A comparison of relative lignin concentration as determined by interference microscopy and bromination/EDXA. Wood Sci Technol 21:303–309

    Article  CAS  Google Scholar 

  • Eriksson I, Lidbrandt O, Westermark U (1988) Lignin distribution in birch (Betula verrucosa) as determined by mercurization with SEM- and TEM-EDXA. Wood Sci Technol 22:251–257

    Article  CAS  Google Scholar 

  • Faix O, Schweers W (1974) Vergleichende Untersuchungen an Polymermodellen des Lignins (DPH's) verschiedener Zusammensetzungen. 4. Mitteilung: UV-spektroskopische Untersuchungen. Holzforschung 28:94–98

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood-chemistry, ultrastructure, reactions. de Gruyter, Berlin

    Google Scholar 

  • Fergus BJ, Goring DAI (1970a) The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24:113–117

    Article  CAS  Google Scholar 

  • Fergus BJ, Goring DAI (1970b) The distribution of lignin in birch wood as determined by ultraviolet microscopy. Holzforschung 24:118–124

    Article  CAS  Google Scholar 

  • Fergus BJ, Procter AR, Scott JAN, Goring DAI (1969) The distribution of lignin in sprucewood as determined by ultraviolet microscopy. Wood Sci Technol 3:117–138

    Article  Google Scholar 

  • Frankenstein C, Schmitt U (2006) Microscopic studies on modified wall structure and lignin topochemistry in xylem fibres of poplar after wounding. Maderas 8:93–106

    Google Scholar 

  • Frankenstein C, Schmitt U, Waitkus C, Eckstein D (2005) Wound callus formation: a microscopic study on poplar (Populus tremula L. x Populus tremuloides Michx.). J Appl Bot Food Qual 79:44–51

    Google Scholar 

  • Fromm J, Rockel B, Lautner S, Windeisen E, Wanner G (2003) Lignin distribution in wood cell walls determined by TEM and backscattered SEM techniques. J Struct Biol 143:77–84

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Shimizu K, Yamaguchi A (1987) Enzymatic saccharification on ultrathin sections and ultraviolet spectra of Japanese hardwoods and softwoods. Mokuzai Gakkaishi 33:400–407

    Google Scholar 

  • Fukazawa K (1992) Ultraviolet microscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 110–121

    Chapter  Google Scholar 

  • Glasser WG (1980) Lignin. In: Casey JP (ed) Pulp and paper. Chemistry and chemical technology. Wiley, New York, pp 39–111

    Google Scholar 

  • Goldschmid O (1971) Ultraviolet spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins, occurrence, formation, structure and reactions. Wiley, New York, pp 241–266

    Google Scholar 

  • Gričar J, Čufar K (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ J Plant Physiol 55:538–543

    Article  Google Scholar 

  • Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir tracheids during autumn. Ann Bot 95:959–965

    Article  PubMed  Google Scholar 

  • Grosser D, Fengel D, Schmidt H (1974) Tamrit-Zypresse (Cupressus dupreziana A. CAMUS). Beitrag zur Ökologie, Anatomie und Chemie. Forstwiss Centralb 93:191–207

    Article  Google Scholar 

  • He L, Terashima N (1991) Formation and structure of lignin in monocotyledons. IV. Deposition process and structural diversity of the lignin in the cell wall of sugarcane and rice plant studied by ultraviolet microscopic spectroscopy. Holzforschung 45:191–198

    Article  CAS  Google Scholar 

  • Hepler PK, Newcomb EH (1963) The fine structure of young tracheary elements arising by redifferentiation of parenchyma in wounded Coleus stem. J Exp Bot 14:496–503

    Article  Google Scholar 

  • Hesse M, Meier H, Zeeh B (1991) Spektroskopische Methoden in der organischen Chemie. Thieme, Stuttgart

    Google Scholar 

  • Higuchi T (1987) Chemistry and biochemistry of bamboo. Bamboo J 4:132–145

    CAS  Google Scholar 

  • Higuchi T (1997) Biochemistry and molecular biology of wood. Springer, Berlin

    Book  Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, New York

    Book  Google Scholar 

  • Hillis WE, Yazaki Y (1973) Polyphenols of Intsia Heartwoods. Phytochemistry 12:2491–2495

    Article  CAS  Google Scholar 

  • Jaffé HH, Orchin M (1962) Theory and application of ultraviolet spectroscopy. Wiley, New York

    Google Scholar 

  • Joseleau JP, Ruel K (1997) Study of lignification by noninvasive techniques in growing maize internodes. An investigation by Fourier transform Infrared, CP/MAS 13C NMR spectroscopy and immunocytochemical transmission electron microscopy. Plant Physiol 114:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Wi SG, Grünwald C, Schmitt U (2002) Immuno electron microscopic localization of peroxidases in the differentiating xylem of Populus spp. Holzforschung 56:355–359

    Article  CAS  Google Scholar 

  • Kindl H (1991) Biochemie der Pflanzen, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Kleist G, Bauch J (2001) Cellular UV microspectrophotometric investigation of Sapelli heartwood (Entandrophragma cylindricum Sprague) from natural provenances in Africa. Holzforschung 55:117–122

    CAS  Google Scholar 

  • Kleist G, Schmitt U (1999) Evidence of accessory components in vessel walls of Sapelli heartwood (Entandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh Werkstoff 57:93–95

    Article  CAS  Google Scholar 

  • Klemm D, Schmauder HP, Heinze T (2002) Cellulose. In: Vandamme E, De Baets S, Steinbüchel A (eds) Polysaccharide II: biopolymers: biology, chemistry, biotechnology, applications, vol 6. Wiley-VCH, Weinheim, pp 277–319

    Google Scholar 

  • Koch G, Grünwald C (2004) Application of UV microspectrophotometry for the topochemical detection of lignin and phenolic extractives in wood fibre cell walls. In: Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 119–130

    Google Scholar 

  • Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55:563–567

    Article  CAS  Google Scholar 

  • Koch G, Rose B, Patt R, Kordsachia O (2003a) Topochemical investigations on delignification of Picea abies [L.] Karst. during alkaline sulfite (ASA) and bisulfite pulping by scanning UV microspectrophotometry. Holzforschung 57:611–618

    CAS  Google Scholar 

  • Koch G, Bauch J, Puls J (2003b) Topochemical characterisation of phenolic extractives in discoloured beechwood (Fagus sylvatica L.). Holzforschung 57:339–345

    CAS  Google Scholar 

  • Koch G, Richter HG, Schmitt U (2006) Topochemical investigation on phenolic deposits in the vessels of afzelia (Afzelia spp.) and merbau (Intsia spp.) heartwood. Holzforschung 60:583–588

    Article  CAS  Google Scholar 

  • Kukkola EM, Koutaniemi S, Gustafsson M, Karhunen P, Ruel K, Lundell TK, Saranpää P, Brunow G, Teeri TH, Fagerstedt KV (2003) Localization of dibenzodioxocin substructures in lignifying Norway spruce xylem by transmission electron microscopy–immunogold labelling. Planta 217:229–237

    PubMed  CAS  Google Scholar 

  • Kukkola EM, Koutaniemi S, Pöllänen E, Gustafsson M, Karhunen P, Lundell TK, Saranpää P, Kilpeläinen I, Teeri TH, Fagerstedt KV (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500

    Article  PubMed  CAS  Google Scholar 

  • Kukkola E, Saranpää P, Fagerstedt K (2008) Juvenile and compression wood cell wall layers differ in lignin structure in Norway spruce and Scots pine. IAWA J 29:47–54

    Google Scholar 

  • Lange PW (1954) The distribution of the components in the plant cell wall. Svensk Papperstidn 57:563–567

    CAS  Google Scholar 

  • Lehringer C, Gierlinger N, Koch G (2007) Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung 62:255–263

    Google Scholar 

  • Lehringer C, Daniel G, Schmitt U (2009) TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci Technol 43:691–702

    Article  CAS  Google Scholar 

  • Liese W, Dujesiefken D (1996) Wound reactions of trees. In: Raychaudhuri SP, Maramorosch K (eds) Forest trees and palms-disease and control. Oxford/IBH, New Delhi, pp 20–42

    Google Scholar 

  • Lu F, Ralph J (1999) Detection and determination of p-coumaroylated units in lignins. J Agric Food Chem 47:1988–1992

    Article  PubMed  CAS  Google Scholar 

  • Lybeer B, Koch G (2005) Lignin distribution in the tropical bamboo species Gigantochloa levis. IAWA J 26:443–456

    Google Scholar 

  • Lybeer B, Koch G, Van Acker J, Goetghebeur P (2006) Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra. Ann Botany 97:529–539

    Article  Google Scholar 

  • Maurer A, Fengel D (1991) Elektronenmikroskopische Darstellung von strukturellen Einzelheiten in Nadelholz-Zellwänden anhand sehr dünner Ultramikrotomschnitte. Holz Roh Werkstoff 49:53–56

    Article  CAS  Google Scholar 

  • Michalowicz G, Robert A (1990) The application of transmission electron microscopy for topochemical studies on aspen wood (Populus tremula): delignification during soda and soda/AQ pulping. Holzforschung 44:39–46

    Article  CAS  Google Scholar 

  • Musha Y, Goring DAI (1975) Distribution of syringyl and guaiacyl moieties in hardwoods as indicated by ultraviolet microscopy. Wood Sci Technol 9:45–58

    Article  CAS  Google Scholar 

  • Nimz HH (1981) Carbon-13 NMR spectra of lignins, 8 structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung 35:16–26

    Article  CAS  Google Scholar 

  • Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R (2010) Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 154:555–561

    Article  PubMed  CAS  Google Scholar 

  • Parham RA (1974) Distribution of lignin in Kraft pulp as determined by electron microscopy. Wood Sci Technol 6:305–315

    CAS  Google Scholar 

  • Paszner L, Behera NC (1989) Topochemistry of softwood delignification by alkali earth metal salt catalysed organosolv pulping. Holzforschung 43:159–168

    Article  CAS  Google Scholar 

  • Prislan P, Koch G, Schmitt U, Čufar K, Gričar J (2009) Topochemical investigation in developing wood of beech (Fagus sylvatica). Holzforschung 63:482–490

    Article  CAS  Google Scholar 

  • Röder T, Koch G, Sixta H (2004) Application of confocal Raman spectroscopy for the topochemical distribution of lignin and cellulose in plant cell walls of beech wood (Fagus sylvatica L.) compared to scanning UV microspectrophotometry. Holzforschung 58:480–482

    Article  Google Scholar 

  • Ruel K (2004) Immunolabelling of lignin sub-structures: a strategy for wood fibre wall topochemical analyses. In: Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 131–140

    Google Scholar 

  • Ruel K, Faix O, Joseleau JP (1994) New immunogold probes for studying the distribution of the different lignin types during plant cell wall biogenesis. J Trace Microprobe Techniques 12:247–265

    CAS  Google Scholar 

  • Ruel K, Burlat V, Joseleau JP (1999) Relationship between ultrastructural topochemistry of lignin and wood properties. IAWA J 20:203–211

    Google Scholar 

  • Saka S, Goring DAI (1988) Localization of lignins in wood cell walls. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, New York, pp 51–62

    Google Scholar 

  • Saka S, Thomas RJ (1982) Evaluation of the quantitative assay of lignin distribution by SEM-EDXA-technique. Wood Sci Technol 16:1–8

    Article  CAS  Google Scholar 

  • Saka S, Whiting P, Fukazawa K, Goring DAI (1982) Comparative studies on lignin distribution by UV microscopy and bromination combined with EDXA. Wood Sci Technol 16:269–277

    Article  CAS  Google Scholar 

  • Sarkanen KV, Hergert HL (1971) Classification and distribution. In: Sarkanen KV, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley, New York, pp 43–49

    Google Scholar 

  • Schmitt U, Liese W (1993) Response of xylem parenchyma by suberization in some hardwoods after mechanical injury. Trees 8:23–30

    Article  Google Scholar 

  • Schmitt U, Melcher E (2004) Section staining with potassium permanganate for transmission electron microscopy: a useful tool for lignin localisation. In: Schmitt U, Ander P, Barnett JR, Emons AMC, Jeronimidis G, Saranpää P, Tschegg S (eds) Wood fibre cell walls: methods to study their formation, structure and properties. Swedish University of Agricultural Sciences, Uppsala, pp 105–117

    Google Scholar 

  • Schmitt U, Singh AP, Frankenstein C, Mölle R (2006) Cell wall modifications in woody stems induced by mechanical stress. New Zealand J For Sci 36:72–86

    Google Scholar 

  • Scott JAN, Procter AR, Fergus BJ, Goring DAI (1969) The application of ultraviolet microscopy to the distribution of lignin in wood: description and validity of the technique. Wood Sci Technol 3:73–92

    Article  Google Scholar 

  • Shigo AL, Marx HG (1977) Compartmentalization of decay in trees. USDA For Ser Agric Bull No 405, 74pp

    Google Scholar 

  • Singh AP, Donaldson L (1999) Ultrastructure of tracheid cell walls in radiata pine (Pinus radiata) mild compression wood. Can J Bot 77:32–40

    Google Scholar 

  • Smith CG, Rodgers MW, Zimmerlin A, Ferdinando D, Bolwell GP (1994) Tissue and subcellular immunolocalization of enzymes of lignin synthesis in differentiating and wounded hypocotyl of French bean (Phaseolus vulgaris L.). Planta 192:155–164

    Article  CAS  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Takabe K (2002) Cell walls of woody plants: autoradiography and ultraviolet microscopy. In: Chaffey N (ed) Wood formation in trees. Taylor and Francis, London, pp 159–177

    Chapter  Google Scholar 

  • Takabe K, Fujita M, Harada H, Saiki H (1981) The deposition of cell wall components in differentiating tracheids of sugi. Mokuzai Gakkaishi 27:249–255

    CAS  Google Scholar 

  • Takabe K, Miyauchi S, Tsunoda R, Fukazawa K (1992) Distribution of guaiacyl and syringyl lignins in Japanese beech (Fagus crenata): variation within annual ring. IAWA Bull 13:105–112

    Google Scholar 

  • Terashima N (2000) Formation and ultrastructure of lignified plant cell walls. In: Kim YS (ed) New horizons in wood anatomy. Chonnam National University Press, Korea, pp 169–180

    Google Scholar 

  • Terashima N, Fukushima K, Takabe K (1986) Heterogeneity in formation of lignin. VIII. An autoradiographic study on the formation of guaiacyl and syringyl lignin in Magnolia kobus DC. Holzforschung 40:101–105

    CAS  Google Scholar 

  • Terashima N, Fukushima K, He L, Takabe K (1993) Comprehensive model of lignified plant cell wall. In: Jung HG, Buxton DR, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. Amer Soc Agriculture, Madison, WI, pp 247–270

    Google Scholar 

  • Terashima N, Nakashima J, Takabe K (1998) Proposed structure for protolignin in plant cell walls, ACS Symposium Series 697. American Chemical Society, Washington, DC, pp 180–193

    Google Scholar 

  • Timell TE (1969) The chemical composition of tension wood. Svensk Papperstidning 72:173–181

    CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Google Scholar 

  • Westermark U (1985) Bromination of different morphological parts of spruce (Picea abies). Wood Sci Technol 19:323–328

    Article  CAS  Google Scholar 

  • Westermark U, Lidbrandt O, Eriksson I (1988) Lignin distribution in spruce (Picea abies) determined by mercurization with SEM-EDXA technique. Wood Sci Technol 22:243–250

    Article  CAS  Google Scholar 

  • Yoshinaga A, Fujita M, Saiki H (1997) Secondary wall thickening and lignification of oak xylem components during latewood formation. Mokuzai Gakkaishi 43:377–383

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koch, G., Schmitt, U. (2013). Topochemical and Electron Microscopic Analyses on the Lignification of Individual Cell Wall Layers During Wood Formation and Secondary Changes. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_2

Download citation

Publish with us

Policies and ethics