Skip to main content
Log in

TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L.

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Tension wood (TW) fibres from maple, beech and oak were analysed with special emphasis on the cell wall fine structure and deposition of aromatic compounds within the gelatinous layer (GL). For this purpose, transmission electron microscopy (TEM) was applied after section staining with potassium permanganate. There was evidence for the occurrence of aromatic compounds in the GLs of fibres of all three species. Some GLs showed a concentric sub-layering. Hence, conclusions about the biosynthetic activities during cell wall formation in TW could be derived. Additional information about structural characteristics of TW fibres were obtained by means of field emission electron microscopy. High-resolution micrographs of cell walls were used for measurements of diameter and microfibril angle (MFA) of cellulose aggregates (CAG). CAG of 7 nm were observed although their diameter varied greatly in the GLs. MFA in the secondary wall of TW was slightly smaller than in opposite wood. The microscopic methods provided complementary ultrastructural and topochemical information on tension wood fibres. The subcellular localisation of aromatic compounds and the observations of the ultrastructural morphology will contribute to the understanding of origin and functionality of TW and its characteristic GL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bamber RK (2001) A general theory for the origin of growth stresses in reaction wood: how trees stay upright. IAWA J 22(3):205–212

    Google Scholar 

  • Bardage S, Donaldson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fiber surfaces: implications for pulp and paper properties. NPPJ 19:448–452

    CAS  Google Scholar 

  • Casperson G (1967) Über die Bildung von Zellwänden bei Laubhölzern. 4. Mitt. Untersuchungen an Eiche (Quercus robur L.). Holzforschung 21:1–6

    Article  Google Scholar 

  • Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26(2):189–195

    Google Scholar 

  • Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38(1):11–24

    Article  CAS  Google Scholar 

  • Dadswell HE, Wardrop AB (1955) The structure and properties of tension wood. Holzforschung 9:97–104

    Article  CAS  Google Scholar 

  • Daniel G, Duchesne I, Tokoh C, Bardage SL (2004) The surface and intracellular nanostructure of wood fibres: Electronmicroscope methods and applications. COST Action E20 Wood Fibre Cell Wall Structure, pp 89–106

  • Daniel G, Filonova L, Kallas ÅM, Teeri T (2006) Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: labelling with cellulose-binding module CBM1HjCel7A and fluorescence and FE-SEM microscopy. Holzforschung 60(6):618–624

    Article  CAS  Google Scholar 

  • Donaldson LA (1992) Lignin distribution during latewood formation in Pinus radiata. IAWA Bulletin NS 12:381–387

    Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613

    Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of Poplar wood cell walls by Confocal Raman Microscopy. Plant Physiol 140:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Handbook Wood (1999) Wood as an Engineering Material. United States Department of Agriculture, Forest Service, Madison

    Google Scholar 

  • Hirakawa Y, Fujisawa Y (1995) The relationship between microfibril angles of the S2 layer and latewood tracheid length in elite sugi tree (Cryptomeria japonica) clones. Mokuzai Gakkaishi 41:123–131

    Google Scholar 

  • Jayme G (1951) Über die Bedeutung des Zugholzanteils in Pappelhölzern. Holz Roh-Werkst 9:1973–1975

    Article  Google Scholar 

  • Joseleau JP, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of Lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219(2):338–345

    Article  CAS  PubMed  Google Scholar 

  • Coté WA Jr, Day AC (1965) Anatomy and ultrastructure of reaction wood. In: Cote WA Jr (ed) Cellular ultrastructure of woody plants. Syracuse University Press, pp 391–418

  • Keunecke D, Baum S (2004) Zeitliche Einordnung der G-Schicht-Auflagerung in den Prozess der Zellwandbildung bei Zugholzfasern in Zitterpappeln. Schweiz Z Forstwes 155(12):523–527

    Google Scholar 

  • Kleist G, Schmitt U (1999) Evidence of accessory components in vessel walls of Sapelli heartwood (Entandophragma cylindricum) obtained by transmission electron microscopy. Holz Roh-Werkst 57:93–95

    Article  CAS  Google Scholar 

  • Kubler H (1987) Growth stress in trees and related wood properties. For Prod Abstr 10:61–119

    Google Scholar 

  • Lehringer C, Gierlinger N, Koch G (2007) Topochemical investigation on tension wood fibres of Acer spp. Fagus sylvatica L. and Quercus robur L. Holzforschung 62:255–263

    Article  CAS  Google Scholar 

  • Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60:474–479

    Article  CAS  Google Scholar 

  • Norberg PH, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibers of aspen (Populus tremula L.). Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leplé J-C, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. Comp Rend Biol 327(9–10):889–901

    Article  CAS  Google Scholar 

  • Prodhan AKMA, Ohtani J, Funada R, Abe H, Fukazawa K (1995a) Ultrastructural investigation of tenison wood fibres in Fraxinus mandshurica Rupr. var. japonica Maxim. Ann Bot 75(3):311–317

    Article  Google Scholar 

  • Prodhan AKMA, Funada R, Ohtani J, Abe H, Fukazawa K (1995b) Orientation of microfibrils and microtubules in developing tension-wood fibres of Japanese ash (Fraxinus mandshurica var. japonica). Planta 196:577–585

    Article  CAS  Google Scholar 

  • Ruel K, Imai T, Pilate G, Leplé JC, Joseleau JP (2003) Influence of mechanical strain and genetic factors on the formation of tension wood. In: Proceedings of Tree Biotechnology, Umea, Sweden, pp S7.20

  • Schmitt U, Melcher E (2004) Section staining with potassium permanganate for Transmission Electron Microscopy: a useful tool for lignin localisation. COST Action E20 Wood Fibre Cell Wall Structure, pp 105–117

  • Scurfield G (1973) Reaction wood, its structure and function. Science 179:647–655

    Article  PubMed  Google Scholar 

  • Scurfield G, Wardrop AB (1963) The nature of reaction wood. VII. Lignification in reaction wood. Aust J Bot 11:107–116

    Article  Google Scholar 

  • Spurr AR (1969) A low viscosity embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  CAS  PubMed  Google Scholar 

  • Terashima N, Fukushima K, He L-F, Takabe K (1993) Comprehensive model of the lignified plant cell wall. Forage Cell Wall Structure and Digestibility, Madison

  • Timell TE (1969) Chemical composition of tension wood. Svensk Papperstidn Nord Cellul 72(6):173–181

    CAS  Google Scholar 

  • Wagenführ R (1966) Anatomie des Holzes unter besonderer Berücksichtigung der Holztechnik. VEB Fachbuchverlag, Leipzig 188 p

    Google Scholar 

  • Washusen R, Evans R, Southerton S (2005) A study of Eucalyptus grandis and Eucalyptus globulus branch wood microstructure. IAWA J 26(2):203–210

    Google Scholar 

  • Yamamoto H, Okuyama T, Yoshida M (1997) Growth stress generation and microfibril angle in reaction wood. In: Proceedings of the IAWA/IUFRO international workshop on the significance of mircofibril angle to wood quality, New Zealand, pp 225–239

  • Yoshida M, Ohta H, Okuyama T (2002) Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia). J Wood Sci 48(2):99–105

    Article  CAS  Google Scholar 

  • Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000) Anatomy and Lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol 34(3):183–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Christian Lehringer likes to thank Geoffrey Daniel and his colleagues for the hospitability during a two months research visit at WURC/SLU in Uppsala. Moreover, this visit would not have been realised without the kind financial support of the GFF (Gesellschaft der Förderer und Freunde des Zentrums Holzwirtschaft der Universität Hamburg e.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lehringer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehringer, C., Daniel, G. & Schmitt, U. TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L.. Wood Sci Technol 43, 691–702 (2009). https://doi.org/10.1007/s00226-009-0260-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-009-0260-7

Keywords

Navigation