Skip to main content

Electrical Long-Distance Signaling in Plants

  • Chapter
  • First Online:
Long-Distance Systemic Signaling and Communication in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 19))

Abstract

In higher plants at least three different types of electrical long-distance signaling exist: action potential (AP), variation potential (VP), and system potential (SP), all of which have their own characteristics concerning their generation, duration, amplitude, velocity, and propagation. Whereas both AP and VP are due to a transient depolarization of the plasma membrane, the SP is based on hyperpolarization. For more than 100 years the AP is known and described for some specialized plants such as the Venus flytrap. Meanwhile, all three types of electrical signaling have been shown for many common plants, monocots as well as dicots, indicating that the capability to generate long-distance electrical signals is not the exception but a general physiological feature of plants. In spite of this, positive proofs for the involvement of these kinds of electrical signaling in the induction of many different plant responses to (a)biotic stresses or in developmental processes still wait to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam G, Läuger P, Stark G (2009) Physikalische Chemie und Biophysik. Springer, Heidelberg

    Book  Google Scholar 

  • Beilby MJ (2007) Action potential in charophytes. Int Rev Cytol 257:43–82

    Article  PubMed  CAS  Google Scholar 

  • Blatt FJ (1974) Temperature dependence of the action potential in Nitella flexilis. Biochim Biophys Acta 339:382–389

    Article  PubMed  CAS  Google Scholar 

  • Bose JCH (1907) Plant response as a means of physiological investigation. Longman, Green & Co, London

    Google Scholar 

  • Braam J (2004) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  Google Scholar 

  • Bradley J, Williams EJ (1966) Chloride electrochemical potentials and membrane resistances in Nitella translucens. J Exp Bot 18:241–253

    Article  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany irritation of the leaf of Dionaea muscipula. Proc R Soc Lond 21:495–496

    Google Scholar 

  • Canny MJP (1975) Mass transfer. In: Zimmermann HM, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin, pp 139–153

    Google Scholar 

  • Darwin CR (1875) Insectivorous plants. John Murray, London

    Book  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Dziubinska H, Paszewski A, Trebacz K, Zawadzki T (1983) Electrical activity of the liverwort Conocephalum conicum: The all-or-nothing law, strength-duration relation, refractory periods and intracellular potentials. Physiol Plantarum 57:279–284

    Article  Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172

    Article  CAS  Google Scholar 

  • Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electric signals in sieve tubes of zucchini plants. Bot Acta 101:327–331

    Google Scholar 

  • Favre P, Greppin H, Agosti RD (2001) Repetitive action potentials induced in Arabidopsis thaliana leaves by wounding and potassium chloride application. Plant Physiol 39:961–969

    CAS  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Hanstein S, Steinmeyer R, Hedrich R (2000) Dynamics of ionic activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness. Plant J 24:297–304

    Article  PubMed  CAS  Google Scholar 

  • Fisahn J, Herde O, Willmitzer L, Peña-Cortés H (2004) Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol 45:456–459

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Eschrich W (1988) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. Trees 2:18–24

    Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow Salix viminalis L. change transpiration and photosynthesis. J Plant Physiol 141:673–680

    Article  CAS  Google Scholar 

  • Fromm J, Fei HM (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125

    Article  Google Scholar 

  • Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 61:3697–3708

    Article  Google Scholar 

  • Furch ACU, van Bel AJE, Fricker MD, Felle HH, Fuchs M, Hafke JB (2009) Sieve element Ca2+ channels as relay stations between remote stimuli and sieve tube occlusion in Vicia faba. Plant Cell 21:2118–2132

    Article  PubMed  CAS  Google Scholar 

  • Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29:23–45

    Article  PubMed  CAS  Google Scholar 

  • Graham JS, Hall G, Pearce G, Ryan CA (1986) Regulation of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 169:399–405

    Article  CAS  Google Scholar 

  • Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505

    Article  PubMed  CAS  Google Scholar 

  • Herde O, Peña-Cortés H, Willmitzer L, Fisahn J (1998) Remote stimulation by heat induces characteristic membrane-potential responses in the veins of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153

    Article  CAS  Google Scholar 

  • Hlavácková V, Krchnák P, Naus J, Novák O, Spundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionaea muscipula Ellis. Planta 174:8–18

    Article  CAS  Google Scholar 

  • Hope AB, Findlay GP (1964) The action potential in Chara. Plant Cell Physiol 5:377–379

    CAS  Google Scholar 

  • Houwink AL (1935) The conduction of excitation in Mimosa pudica. Recueil des Travaux Botaniques Neerlandais 32:51–91

    Google Scholar 

  • Julien JL, Desbiez MO, de Jeagher G, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa. J Exp Bot 42:131–137

    Article  Google Scholar 

  • Kikuyama M (1987) Ion efflux during a single action potential of Nitella axilliformis in medium lacking Ca2+. Plant Cell Physiol 28:179–186

    CAS  Google Scholar 

  • Kunkel KAJ (1898) Über elektromotorische Wirkungen an unverletzten lebenden Pflanzenteilen. Arbeiten des Botanischen Instituts Würzburg 2:1–17

    Google Scholar 

  • Lautner S, Grams EET, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 139:2200–2209

    Article  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Yostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58

    Article  Google Scholar 

  • Malone M (1992) Kinetics of wound-induced hydraulic signals and variation potentials in wheat seedlings. Planta 187:505–510

    Article  Google Scholar 

  • Malone M, Stanković B (1991) Surface potentials and hydraulic signals in wheat leaves following localized wounding by heat. Plant Cell Environ 14:431–436

    Article  Google Scholar 

  • Marrè E (1979) Fusicoccin: a tool in plant physiology. Ann Rev Plant Physiol 30:273–288

    Article  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Ann Rev Plant Biol 63:431–450

    Article  Google Scholar 

  • Opritov VA, Lobov SA, Pyatgin SS, Mysyagin SA (2005) Analysis of possible involvement of local bioelectric responses in chilling perception by higher plants exemplified by Cucurbita pepo. Russ J Plant Physiol 52:801–808

    Article  CAS  Google Scholar 

  • Paszewski A, Zawadzki T (1976) Action potentials in Lupinus angustifolius L. shoots. III. Determination of the refractory periods. J Exp Bot 27:369–374

    Article  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Pyatygin SS, Opritov VA, Vodeneev VA (2008) Signaling role of action potentials in higher plants. Russ J Plant Physiol 55:285–291

    Article  CAS  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57

    Article  CAS  Google Scholar 

  • Ricca U (1916) Soluzione d´un problema di fisiologia: la propagazione di stimulo nella Mimosa. Nuovo Giornale Botanico Italiano 23:51–170

    Google Scholar 

  • Roblin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:455–461

    Google Scholar 

  • Roblin G, Bonnemain JL (1985) Propagation in Vicia faba stem of a potential variation induced by wounding. Plant Cell Physiol 26:1273–1283

    Google Scholar 

  • Sibaoka T (1953) Some aspects on the slow conduction of stimuli in the leaf of Mimosa pudica. Sci Rep Tohoku Univ Biol 20:72–88

    Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Ann Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1992) Rapid alterations in growth rate and electrical potentials upon stem excision in pea seedlings. Planta 187:523–531

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1994) Comparison of electric and growth responses to excision in cucumber and pea seedlings. I. Short-distance effects are a result of wounding. Plant Cell Environ 17:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425

    Article  PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997a) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217

    PubMed  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997b) Slow wave potentials in cucumber differ in form and growth effect from those in pea seedlings. Physiol Plantarum 101:379–388

    Article  CAS  Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2005) Decrement and amplification of slow wave potentials during their propagation in Helianthus annuus L. shoots. Planta 220:550–558

    Article  PubMed  CAS  Google Scholar 

  • Stanković B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    Article  PubMed  Google Scholar 

  • Stanković B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406

    Article  Google Scholar 

  • Stanković B, Zawadzki T, Davies E (1997) Characterization of the variation potential in sunflower. Plant Physiol 115:1083–1088

    PubMed  Google Scholar 

  • Tarr SE, Lannoye RJ, Dainty J (1970) Changes of ionic and electrical properties of Chara australis when the external Ca is replaced by Mg. J Exp Bot 21:552–557

    Article  CAS  Google Scholar 

  • Trebacz K (1992) Measurements of intra- and extracellular pH in the liverwort Conocephalum conicum during action potentials. Physiol Plantarum 84:448–452

    Article  Google Scholar 

  • Trebacz K, Tarnecki R, Zawadzki T (1989) The effects of ionic channel inhibitors and factors modifying metabolism on the excitability of the liverwort Conocephalum conicum. Physiol Plantarum 75:24–30

    Article  CAS  Google Scholar 

  • Trebacz K, Simonis W, Schönknecht G (1994) Cytoplasmatic Ca2+, K+, Cl, and NO3 activities in the liverwort Conocephalum conicum L. at rest and during action potentials. Plant Physiol 106:1073–1084

    PubMed  CAS  Google Scholar 

  • Trebacz K, Simonis W, Schönknecht G (1997) Effects of anion channel inhibitors on light-induced potential changes in the liverwort Conocephalum conicum. Plant Cell Physiol 38:550–557

    Article  CAS  Google Scholar 

  • Tsutsui I, Taka-aki O, Kishimoto U (1986) Inhibition of Cl channel activation in Chara corallina membrane by lanthanum ion. Plant Cell Physiol 27:1197–1200

    CAS  Google Scholar 

  • van Bel AJE, Ehlers K (2005) Electrical signalling via plasmodesmata. In: Oparka KJ (ed) Plasmodesmata. Blackwell, Oxford, pp 263–278

    Google Scholar 

  • van Sambeek JW, Pickard BG (1976a) Mediation of rapid electrical, metabolic transpirational, and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Can J Bot 54:2642–2650

    Article  Google Scholar 

  • van Sambeek JW, Pickard BG (1976b) Mediation of rapid electrical, metabolic transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Can J Bot 54:2651–2661

    Article  Google Scholar 

  • Vian A, Vian-Henry C, Schantz R, Ledoigt G, Frachisse JM, Desbiez MO, Julien JL (1996) Is membrane potential involved in calmodulin gene expression after external stimulation in plants? FEBS Lett 380:93–96

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Adesina T, Markin VS, Jovanov E (2007) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  PubMed  Google Scholar 

  • Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in venus flytrap. Plant Physiol 149:1661–1667

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010a) Mimosa pudica: Electrical and mechanical stimulation of plant movement. Plant Cell Environ 33:163–173

    Article  PubMed  Google Scholar 

  • Volkov AG, Foster JC, Markin VS (2010b) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33:816–827

    Article  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Williams SE, Pickard BG (1972) Properties of action potentials in Drosera tentacles. Planta 103:222–240

    Article  Google Scholar 

  • Zimmermann MR (2010) Analyse der (elektrophysiologisch vermittelten) systemischen Signalübertragung bei Hordeum vulgare L. und Vicia faba L. Doctoral thesis, Justus-Liebig-University Gießen, Germany

    Google Scholar 

  • Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: Superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MR, Maischak H, Mithöfer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann MR, Hafke JB, van Bel AJE, Furch ACU (2013) Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Plant Cell Environ 36:237–247. doi:10.1111/j.1365-3040.2012.02571.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Mithöfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, M.R., Mithöfer, A. (2013). Electrical Long-Distance Signaling in Plants. In: Baluška, F. (eds) Long-Distance Systemic Signaling and Communication in Plants. Signaling and Communication in Plants, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36470-9_15

Download citation

Publish with us

Policies and ethics