Skip to main content

Progress in Physical and Chemical Pretreatment of Lignocellulosic Biomass

  • Chapter
  • First Online:
Biofuel Technologies

Abstract

Lignocelluloses are abundant and nonfood-based materials that are considered as the most suitable feedstocks for the future energy production. However, these materials have naturally evolved to resist against physical and biological attacks. Thus, the conversion yield of lignocellulosic materials without a preprocessing step, called pretreatment, is not typically high enough for a process to be commercially viable. However, in the last decade or so, continued worldwide research efforts resulted in a significant improvement in the understanding of the biomass characteristics that influence subsequent biological conversions. The cell wall composition, characteristics, components distribution, and linkage between different parts are some of the factors that have been shown to have significant effects on biological conversion of lignocelluloses. In this chapter, different aspects of the parameters affecting the pretreatment and progress in the characteristic modification of lignocelluloses are reviewed. Furthermore, the challenges and conflicts in the related researches are discussed and some suggestions with concluding remarks are presented. Moreover, the most important processes, including pretreatment with acid, alkali, and cellulosic solvents are presented. The fundamental reactions and biomass structural changes in the processes imparted by these leading pretreatments, as well as recent progresses, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aad G, Abbott B, Abdallah J, Abdelalim AA, Abdesselam A, Abdinov O, Abi B, Abolins M et al (2010) Search for new particles in two-jet final states in 7 TeV proton–proton collisions with the ATLAS detector at the LHC. Phys Rev Lett 105:161801

    Article  PubMed  CAS  Google Scholar 

  • Ago M, Endo T, Hirotsu T (2004) Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11:163–167

    Article  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  PubMed  CAS  Google Scholar 

  • Aravamuthan RG (2004) Pulping: chemical pulping. In: Jeffery B (ed) Encyclopedia of forest sciences. Elsevier, Oxford, pp 904–910

    Chapter  Google Scholar 

  • Bak JS, Ko JK, Han YH, Lee BC, Choi IG, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Bak JS, Kim MD, Choi IG, Kim KH (2010) Biological pretreatment of rice straw by fermenting with Dichomitus squalens. N Biotechnol 27:424–434

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros I, Oliva JM, Navarro AA, Gonzalez A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84–6:97–110

    Article  Google Scholar 

  • Behrendt CJ, Blanchette RA (1997) Biological processing of pine logs for pulp and paper production with phlebiopsis gigantea. Appl Environ Microbiol 63:1995–2000

    PubMed  CAS  Google Scholar 

  • Bertaud F, Sundberg A, Holmbom B (2002) Evaluation of acid methanolysis for analysis of wood hemicelluloses and pectins. Carbohydr Polym 48:319–324

    Article  CAS  Google Scholar 

  • Bertran MS, Dale BE (1985) Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnol Bioeng 27:177–181

    Article  PubMed  CAS  Google Scholar 

  • Besombes S, Mazeau K (2005) The cellulose/lignin assembly assessed by molecular modeling. Part 1: adsorption of a threo guaiacyl beta-O-4 dimer onto a Ibeta cellulose whisker. Plant Physiol Biochem 43:299–308

    Article  PubMed  CAS  Google Scholar 

  • Biermann CJ (1996) Pulping fundamentals. In: Handbook of pulping and papermaking, 2nd edn. Academic Press, San Diego, pp 55–100

    Google Scholar 

  • Biganska O, Navard P (2003) Phase diagram of a cellulose solvent: N-methylmorpholine–N-oxide–water mixtures. Polymer 44:1035–1039

    Article  CAS  Google Scholar 

  • Billa E, Monties B (1991) Occurrence of silicon associated with lignin-polysaccharide complexes isolated from gramineae (wheat straw) cell walls. Food Hydrocolloids 5:189–195

    Article  CAS  Google Scholar 

  • Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. PNAS 107:4516–4521

    Article  PubMed  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK et al (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  PubMed  CAS  Google Scholar 

  • Biswas D, Misbahuddin M, Roy U, Francis RC, Bose SK (2011) Effect of additives on fiber yield improvement for kraft pulping of kadam (Anthocephalus chinensis). Bioresour Technol 102:1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Bose S, Barnes CA, Petrich JW (2012) Enhanced stability and activity of cellulase in an ionic liquid and the effect of pretreatment on cellulose hydrolysis. Biotechnol Bioeng 109:434–443

    Article  PubMed  CAS  Google Scholar 

  • Brownell HH, Yu EK, Saddler JN (1986) Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnol Bioeng 28:792–801

    Article  PubMed  CAS  Google Scholar 

  • Cameron MG, Fahey GC Jr, Clark JH, Merchen NR, Berger LL (1990) Effects of feeding alkaline hydrogen peroxide-treated wheat straw-based diets on digestion and production by dairy cows. J Dairy Sci 73:3544–3554

    Article  PubMed  CAS  Google Scholar 

  • Cameron MG, Fahey GC Jr, Clark JH, Merchen NR, Berger LL (1991) Effects of feeding alkaline hydrogen peroxide-treated wheat straw-based diets on intake, digestion, ruminal fermentation, and production responses by mid-lactation dairy cows. J Anim Sci 69:1775–1787

    PubMed  CAS  Google Scholar 

  • Canilha L, Santos VT, Rocha GJ, Almeida e Silva JB, Giulietti M, Silva SS, Felipe MG, Ferraz A et al (2011) A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Castro FB, Hotten PM, Orskov ER (1993) Effects of dilute-acid hydrolysis treatment on the physico-chemical features and bio-utilization of wheat straw. Anim Feed Sci Technol 42:55–67

    Article  CAS  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24:1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Ewanick S, Chung P, Au-Yeung K, Rio L, Mabee W, Saddler J (2009) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84–86:5–37

    Article  PubMed  Google Scholar 

  • Chang M, Chou T, Tsao G (1981) Structure, pretreatment and hydrolysis of cellulose. In: Bioenergy 15–42

    Google Scholar 

  • Chen C, Boldor D, Aita G, Walker M (2012) Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment. Bioresour Technol 110:190–197

    Article  PubMed  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Ping WX, Ge JP, Zhou YJ, Ling HZ, Xu JM (2008) Sugarcane bagasse mild alkaline/oxidative pretreatment for ethanol production by alkaline recycle process. Appl Biochem Biotechnol 151:43–50

    Article  PubMed  CAS  Google Scholar 

  • Chesson A (1988) Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Anim Feed Sci Technol 21:219–228

    Article  CAS  Google Scholar 

  • Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011a) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  PubMed  CAS  Google Scholar 

  • Chundawat SP, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh AM, Agarwal UP, Bianchetti CM et al (2011b) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  PubMed  CAS  Google Scholar 

  • Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose—structure and characterization cellulose chem. Technol 45:13–21

    CAS  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Article  PubMed  Google Scholar 

  • Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose. Part 1: free floating cotton and wood fibres in N-methylmorpholine-N-oxide-water mixtures. Macromol Symp 244:1–18

    Article  CAS  Google Scholar 

  • Curreli N, Fadda MB, Rescigno A, Rinaldi AC, Soddu G, Sollai F, Vaccargiu S, Sanjust E et al (1997) Mild alkaline/oxidative pretreatment of wheat straw. Process Biochem 32:665–670

    Article  CAS  Google Scholar 

  • Czirnich W, Patt R (1976) Untersuchungen uber die stabilisierung von hemicellulosen beim sulfitverfahren auf magnesium-basis. Holzforschung 30:124–132

    Google Scholar 

  • da Costa Sousa L, Chundawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol 20:339–347

    Article  CAS  Google Scholar 

  • Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910

    Article  PubMed  CAS  Google Scholar 

  • Deschamps FC, Ramos LP, Fontana JD (1996) Pretreatment of sugar cane bagasse for enhanced ruminal digestion. Appl Biochem Biotechnol 57–58:171–182

    Article  PubMed  Google Scholar 

  • Deshpande MD, Scheicher RH, Ahuja R, Pandey R (2008) Binding strength of sodium ions in cellulose for different water contents. J Phys Chem B 112:8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54:597–606

    Article  PubMed  CAS  Google Scholar 

  • Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75:90–94

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    Article  PubMed  CAS  Google Scholar 

  • Elbeshbishy E, Aldin S, Hafez H, Nakhla G, Ray M (2011) Impact of ultrasonication of hog manure on anaerobic digestability. Ultrason Sonochem 18:164–171

    Article  PubMed  CAS  Google Scholar 

  • Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Do enzymatic hydrolyzability and Simons’ stain reflect the changes in the accessibility of lignocellulosic substrates to cellulase enzymes? Biotechnol Prog 17:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Ewanick SM, Bura R, Saddler JN (2007) Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol Bioeng 98:737–746

    Article  PubMed  CAS  Google Scholar 

  • Fan LT, Lee Y, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199

    Article  CAS  Google Scholar 

  • Fan L, Lee Y, Gharpuray M (1982) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv Biochem Eng Biotechnol 23:158–183

    Google Scholar 

  • Fengel D, Wegener G (1979) Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In: Jurasek L, Brown RD (eds) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181. American Chemical Society, pp 145–158

    Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fengel D, Wegener G, Heizmann A, Przyklenk M (1978) Analysis of wood and cellulose by total hydrolysis with trifluoroacetic acid. Cellul Chem Technol 12:31–37

    CAS  Google Scholar 

  • Fernandez-Cegri V, de la Rubia MA, Raposo F, Borja R (2012) Impact of ultrasonic pretreatment under different operational conditions on the mesophilic anaerobic digestion of sunflower oil cake in batch mode. Ultrason Sonochem 19:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP (2007) Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz J Plant Physiol 19:1–13

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Adv Polym Sci 26:1473–1524

    CAS  Google Scholar 

  • Forsskahl I, Popoff T, Theander O (1976) Reactions of -xylose and -glucose in alkaline, aqueous solutions. Carbohydr Res 48:13–21

    Article  CAS  Google Scholar 

  • Foston M, Ragauskas AJ (2010) Changes in lignocellulosic supramolecular and ultrastructure during dilute acid pretreatment of populus and switchgrass. Biomass Bioenergy 34:1885–1895

    Article  CAS  Google Scholar 

  • Fry SC (1989) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Article  CAS  Google Scholar 

  • Fu D, Mazza G (2011) Aqueous ionic liquid pretreatment of straw. Bioresour Technol 102:7008–7011

    Article  PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    PubMed  CAS  Google Scholar 

  • Geng X, Henderson WA (2012) Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction. Biotechnol Bioeng 109:84–91

    Article  PubMed  CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  CAS  Google Scholar 

  • Glaus MA, Van Loon LR (2008) Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study. Environ Sci Technol 42:2906–2911

    Article  PubMed  CAS  Google Scholar 

  • Grethelin HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat Biotechnol 3:155–160

    Article  Google Scholar 

  • Grohmann K, Torget R, Himmel M (1986a) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng SympWiley 15:59–80

    CAS  Google Scholar 

  • Grohmann K, Torget R, Himmel M (1986b) Dilute acid pretreatment research. Biochemical conversion program review meeting, Solar Energy Research Inst., Golden, CO, pp 121–138

    Google Scholar 

  • Grohmann K, Mitchell D, Himmel M, Dale B, Schroeder H (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20–21:45–61

    Article  Google Scholar 

  • Gümüskaya E, Usta M (2006) Dependence of chemical and crystalline structure of alkali sulfite pulp on cooking temperature and time. Carbohydr Polym 65:461–468

    Article  CAS  Google Scholar 

  • Ha SH, Mai NL, An G, Koo YM (2011) Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour Technol 102:1214–1219

    Article  PubMed  CAS  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels, Bioprod Biorefin 5:215–225

    Article  CAS  Google Scholar 

  • Hallac BB, Ray M, Murphy RJ, Ragauskas AJ (2010) Correlation between anatomical characteristics of ethanol organosolv pretreated Buddleja davidii and its enzymatic conversion to glucose. Biotechnol Bioeng 107:795–801

    Article  PubMed  CAS  Google Scholar 

  • Harris J, Baker A, Zerbe J (1984) Two-stage, dilute sulfuric acid hydrolysis of hardwood for ethanol production. Energy Biomass Wastes 8:1151–1170

    CAS  Google Scholar 

  • Harun MY, Dayang Radiah AB, Zainal Abidin Z, Yunus R (2011) Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresour Technol 102:5193–5199

    Article  PubMed  CAS  Google Scholar 

  • Haverty D, Dussan K, Piterina AV, Leahy JJ, Hayes MH (2012) Autothermal, single-stage, performic acid pretreatment of miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulase-digestible pulp. Bioresour Technol 109:173–177

    Article  PubMed  CAS  Google Scholar 

  • Hayashi J, Sufoka A, Ohkita J, Watanabe S (1975) The confirmation of existences of cellulose IIII, IIIII, IVI, and IVII by the X-ray method. J Polym Sci: Polym Lett ed 13:23–27

    Article  CAS  Google Scholar 

  • He X, Miao Y, Jiang X, Xu Z, Ouyang P (2010) Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl Biochem Biotechnol 160:2449–2457

    Article  PubMed  CAS  Google Scholar 

  • Heiss-Blanquet S, Zheng D, Lopes Ferreira N, Lapierre C, Baumberger S (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresour Technol 102:5938–5946

    Article  PubMed  CAS  Google Scholar 

  • Henderson R (1970) Structure of crystalline alpha-chymotrypsin. IV. The structure of indoleacryloyl-alpha-chyotrypsin and its relevance to the hydrolytic mechanism of the enzyme. J Mol Biol 54:341–354

    Article  PubMed  CAS  Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  PubMed  CAS  Google Scholar 

  • Hepworth DG, Vincent JF, Stringer G, Jeronimidis G (2002) Variations in the morphology of wood structure can explain why hardwood species of similar density have very different resistances to impact and compressive loading. Philos Trans Math Phys Eng Sci 360:255–272

    Article  Google Scholar 

  • Higgins FJ, Ho GE (1982) Hydrolysis of cellulose using HCl: a comparison between liquid phase and gaseous phase processes. Agric Waste 4:97–116

    Article  CAS  Google Scholar 

  • Hong J, Ye X, Zhang YH (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540

    Article  PubMed  CAS  Google Scholar 

  • Hong F, Guo X, Zhang S, Han SF, Yang G, Jonsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104:503–508

    Article  PubMed  CAS  Google Scholar 

  • Isogai A, Atalla RH (1991) Amorphous celluloses stable in aqueous media: regeneration from SO2–amine solvent systems. J Polym Sci, Part A: Polym Chem 29:113–119

    Article  CAS  Google Scholar 

  • Jacobsen SE, Wyman CE (2000) Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes. Appl Biochem Biotechnol 84–86:81–96

    Article  PubMed  Google Scholar 

  • Jeihanipour A (2011) Waste textile bioprocessing to ethanol and biogas. Department of Chemical and Biological Engineering, Ph.D thesis

    Google Scholar 

  • Jeihanipour A, Karimi K, Niklasson C, Taherzadeh MJ (2010a) A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles. Waste Manag 30:2504–2509

    Article  CAS  Google Scholar 

  • Jeihanipour A, Karimi K, Taherzadeh MJ (2010b) Enhancement of ethanol and biogas production from high-crystalline cellulose by different modes of NMO pretreatment. Biotechnol Bioeng 105:469–476

    Article  CAS  Google Scholar 

  • Jiang ZH, Fei BH, Yang Z (2007) Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 27:435–438

    PubMed  CAS  Google Scholar 

  • Karlsson J, Medve J, Tjerneld F (1999) Hydrolysis of steam-pretreated lignocellulose: synergism and adsorption for cellobiohydrolase I and endoglucanase II of Trichoderma reesei. Appl Biochem Biotechnol 82:243–258

    Article  PubMed  CAS  Google Scholar 

  • Keshwani DR, Cheng JJ (2010) Modeling changes in biomass composition during microwave-based alkali pretreatment of switchgrass. Biotechnol Bioeng 105:88–97

    Article  PubMed  CAS  Google Scholar 

  • Keys JE Jr, DeBarthe JV (1974) Cellulose and hemicellulose digestibility in the stomach, small intestine and large intestine of swine. J Anim Sci 39:53–56

    PubMed  Google Scholar 

  • Keys JE Jr, Van Soest PJ, Young EP (1969) Comparative study of the digestibility of forage cellulose and hemicellulose in ruminants and nonruminants. J Anim Sci 29:11–15

    PubMed  Google Scholar 

  • Khodaverdi M, Jeihanipour A, Karimi K, Taherzadeh MJ (2012) Kinetic modeling of rapid enzymatic hydrolysis of crystalline cellulose after pretreatment by NMMO. J Ind Microbiol Biotechnol 39:429–438

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994–2006

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Holtzapple MT (2006) Effect of structural features on enzyme digestibility of corn stover. Bioresour Technol 97:583–591

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Lee YY (2002) Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilut-acid pretreatment. Bioresour Technol 83:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Lee YY (2006) Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresour Technol 97:224–232

    Article  PubMed  CAS  Google Scholar 

  • Kim BS, Um BH, Park SC (2001) Effect of pretreatment reagent and hydrogen peroxide on enzymatic hydrolysis of oak in percolation process. Appl Biochem Biotechnol 91–93:81–94

    Article  PubMed  Google Scholar 

  • Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90:39–47

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Sandquist D, Sundberg B, Daniel G (2011) Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta. doi:10.1007/s00425-011-1576-8

    Google Scholar 

  • Kim S, Park JM, Seo JW, Kim CH (2012) Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233

    Article  PubMed  CAS  Google Scholar 

  • Knappert D, Grethlein H, Converse A (1980) Partial acid hydrolysis of cellulosic materials as a pretreatment for enzymatic hydrolysis. Biotechnol Bioeng 22:1449–1463

    Article  CAS  Google Scholar 

  • Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Sakai Y (1956) Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid. Bull Agr Chem Soc Jpn 20:1–7

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from lantanacamara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101:8348–8354

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2008) An improved method to directly estimate cellulase adsorption on biomass solids. Enzyme Microb Technol 42:426–433

    Article  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009a) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103:252–267

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Wyman CE (2009b) Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies. Biotechnol Prog 25:807–819

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100:3948–3962

    Article  PubMed  CAS  Google Scholar 

  • Kuo C-H, Lee C-K (2009a) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46

    Article  CAS  Google Scholar 

  • Kuo C-H, Lee C-K (2009b) Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour Technol 100:866–871

    Article  PubMed  CAS  Google Scholar 

  • Lamed R, Kenig R, Setter E, Bayer EA (1985) Major characteristics of the cellulolytic system of Clostridium thermocellum coincide with those of the purified cellulosome. Enzyme Microb Technol 7:37–41

    Article  CAS  Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Brown RM Jr, Kuga S, Shoda S, Kobayashi S (1994) Assembly of synthetic cellulose I. Proc Natl Acad Sci USA 91:7425–7429

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Lennartsson PR, Niklasson C, Taherzadeh MJ (2011) A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor. Bioresour Technol 102:4425–4432

    Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  PubMed  CAS  Google Scholar 

  • Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SP, Sousa L, Melnichenko YB, Dale BE, Simmons BA, Singh S (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102:6928–6936

    Google Scholar 

  • Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850

    Article  CAS  Google Scholar 

  • Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182

    Article  CAS  Google Scholar 

  • Li Q, He YC, Xian M, Jun G, Xu X, Yang JM, Li LZ (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  PubMed  CAS  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA et al (2010a) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Jiang X, He Y, Li L, Xian M, Yang J (2010b) Evaluation of the biocompatible ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87:117–126

    Article  PubMed  CAS  Google Scholar 

  • Li B, Asikkala J, Filpponen I, Argyropoulos DS (2010c) Factors affecting wood dissolution and regeneration of ionic liquids. Ind Eng Chem Res 49:2477–2484

    Article  CAS  Google Scholar 

  • Liebert T (2010) Cellulose solvents-remarkable history, bright future, cellulose solvents: for analysis, shaping and chemical modification. American Chemical Society, Washington

    Book  Google Scholar 

  • Lin KW, Ladisch MR, Voloch M, Patterson JA, Noller CH (1985) Effect of pretreatments and fermentation on pore size in cellulosic materials. Biotechnol Bioeng 27:1427–1433

    Article  PubMed  CAS  Google Scholar 

  • Lis MJ, Carrillo F, Colom X, Martinez D, Nogues F (2000) Acid hydrolysis of straw before its enzymic treatment. Determination of a kinetic model. Ing Quim (Madrid) 32:181–186

    CAS  Google Scholar 

  • Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436

    Article  CAS  Google Scholar 

  • Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  PubMed  CAS  Google Scholar 

  • Liu C-Z, Wang F, Stiles AR, Guo C (2012) Ionic liquids for biofuel production: opportunities and challenges. Appl Energy 92:406–414

    Article  CAS  Google Scholar 

  • Lucas M, Macdonald BA, Wagner GL, Joyce SA, Rector KD (2010) Ionic liquid pretreatment of poplar wood at room temperature: swelling and incorporation of nanoparticles. ACS Appl Mater Interfaces 2:2198–2205

    Article  PubMed  CAS  Google Scholar 

  • Lynam JG, Toufiq Reza M, Vasquez VR, Coronella CJ (2012) Pretreatment of rice hulls by ionic liquid dissolution. Bioresour Technol. doi:10.1016/j.biortech.2012.03.004

    PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crop Prod 32:175–201

    Article  CAS  Google Scholar 

  • Mansour OY, Saady M, Mottaleb FA (1972) On structure of cellulose, Part I, study of changes due to alkali treatment by infrared spectroscopy. Indian Pulp Pap 26:72–84

    CAS  Google Scholar 

  • Martin C, Rocha G, Perez M, Lopez Y, Hernandez E, Plasencia Y (2008) Acid prehydrolysis, alkaline delignification and enzymatic hydrolysis of rice hulls. Cellul Chem Technol 41:129–135

    Google Scholar 

  • McCarter SL, Adney WS, Vinzant TB, Jennings E, Eddy FP, Decker SR, Baker JO, Sakon J et al (2002) Exploration of cellulose surface-binding properties of acidothermus cellulolyticus Cel5A by site-specific mutagenesis. Appl Biochem Biotechnol 98–100:273–287

    Article  PubMed  Google Scholar 

  • McMillan JD (1992) Process for pretreating lignocellulosic biomass: a review. National Renewable Energy Lab., Golden, COReport No. NREL/TP 4214978

    Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) ACS symposium series (enzymatic conversion of biomass for fuels production), vol 566, pp 292–324

    Google Scholar 

  • Meister G, Wechsler M (1998) Biodegradation of N-methylmorpholine-N-oxide. Biodegrad 9:91–102

    Article  CAS  Google Scholar 

  • Millett MA, Baker AJ, Satter LD (1976) Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol Bioeng Symp 125–153

    Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour J, Karimi K, Taherzadeh MJ (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5:928–938

    CAS  Google Scholar 

  • Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41

    Article  PubMed  CAS  Google Scholar 

  • Morag E, Bayer EA, Lamed R (1990) Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J Bacteriol 172:6098–6105

    PubMed  CAS  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108:1229–1245

    Article  PubMed  CAS  Google Scholar 

  • Morjanoff PJ, Gray PP (1987) Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng 29:733–741

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun (Camb), pp 1557–1559

    Google Scholar 

  • Mugnolo AMJ, Macchi EM, Marx-Flglnl M (1988) Dilute acid-hydrolized cotton cellulose: an electron diffraction study. Polym Bull 19:187–192

    Article  CAS  Google Scholar 

  • Nguyen QA, Tucker MP, Keller FA, Eddy FP (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    Article  PubMed  Google Scholar 

  • Nguyen TA, Kim KR, Han SJ, Cho HY, Kim JW, Park SM, Park JC, Sim SJ (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour Technol 101:7432–7438

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya K, Kamide K, Takahashi K, Shimizu N (2012) Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour Technol 103:259–265

    Article  PubMed  CAS  Google Scholar 

  • Norman AG (1934) The biological decomposition of plant materials: part IX. The anaerobic decopmsition of hemicelluloses. Ann Appl Biol 21:454–475

    Article  CAS  Google Scholar 

  • Ogiwara Y, Arai K (1968) Swelling degree of cellulose materials and hydrolysis rate with cellulase. Text Res J 38:885–891

    Article  CAS  Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 121–124:1069–1079

    Article  PubMed  Google Scholar 

  • Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D et al (2006a) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  CAS  Google Scholar 

  • Pan X, Gilkes N, Saddler J (2006b) Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung 60:398–401

    Article  CAS  Google Scholar 

  • Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006c) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007a) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6:507–511

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Xie D, Kang KY, Yoon SL, Saddler JN (2007b) Effect of organosolv ethanol pretreatment variables on physical characteristics of hybrid poplar substrates. Appl Biochem Biotechnol 137–140:367–377

    Article  PubMed  Google Scholar 

  • Pang C, Xie T, Lin L, Zhuang J, Liu Y, Shi J, Yang Q (2012) Changes of the surface structure of corn stalk in the cooking process with active oxygen and MgO-based solid alkali as a pretreatment of its biomass conversion. Bioresour Technol 103:432–439

    Article  PubMed  CAS  Google Scholar 

  • Patt R, Kordsachia O, Süttinger R (2011) Pulp. In: Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Pei H, Liu L, Zhang X, Sun J (2012) Flow-through pretreatment with strongly acidic electrolyzed water for hemicellulose removal and enzymatic hydrolysis of corn stover. Bioresour Technol 110:292–296

    Article  PubMed  CAS  Google Scholar 

  • Peng F, Peng P, Xu F, Sun RC (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv. doi:10.1016/j.biotechadv.2012.01.018

    PubMed  Google Scholar 

  • Pérez S, Samain D (2010) Structure and engineering of celluloses. In: Derek H (ed) Advances in carbohydrate chemistry and biochemistry, vol 64. Academic Press, New York, pp 25–116

    Google Scholar 

  • Pham TT, Brar SK, Tyagi RD, Surampalli RY (2009) Ultrasonication of wastewater sludge-consequences on biodegradability and flowability. J Hazard Mater 163:891–898

    Article  PubMed  CAS  Google Scholar 

  • Pingali SV, Urban VS, Heller WT, McGaughey J, O’Neill H, Foston M, Myles DA, Ragauskas A et al (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11:2329–2335

    Article  PubMed  CAS  Google Scholar 

  • Poornejad N, Karimi K, Behzad T (2012) Improvement of saccharification and ethanol production from rice straw by NMMO and [BMIM][OAc] pretreatments. Ind Crop Prod

    Google Scholar 

  • Procter AR, Wiekenkamp RH (1969) The stabilization of cellulose to alkaline degradation by novel end unit modifications. J Polym Sci, Part C: Polym Symp 28:1–13

    Article  Google Scholar 

  • Pu YQ, Jiang N, Ragauskas AJJ (2007) Ionic liquid as a green solvent for lignin. Wood Chem Technol 27:23–33

    Article  CAS  Google Scholar 

  • Puri VP (1984) Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng 26:1219–1222

    Article  PubMed  CAS  Google Scholar 

  • Puri VP, Pearce GR (1986) Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis. Biotechnol Bioeng 28:480–485

    Article  PubMed  CAS  Google Scholar 

  • Qi B, Chen X, Wan Y (2010) Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresour Technol 101:4875–4883

    Article  PubMed  CAS  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951

    Article  PubMed  CAS  Google Scholar 

  • Ramos LP, Breuil C, Saddler JN (1992) Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymic hydrolysis. Appl Biochem Biotechnol 34–35:37–48

    Article  Google Scholar 

  • Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 1271–1273

    Google Scholar 

  • Rocha GJ, Martin C, da Silva VF, Gomez EO, Goncalves AR (2012) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour Technol 111:447–452

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues TH, Rocha MV, de Macedo GR, Goncalves LR (2011) Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment. Appl Biochem Biotechnol 164:929–943

    Article  PubMed  CAS  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YH (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  PubMed  CAS  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (lyocell process). Prog Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  • Saeman JF (1945) Kinetics of wood saccharification: Hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem 37:43–52

    Article  CAS  Google Scholar 

  • Saeman JF (1949) Kinetics of wood hydrolysis and the decomposition of sugars in dilute acids at high temperatures. Holzforschung 4:1–14

    Article  CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21:816–822

    Article  PubMed  CAS  Google Scholar 

  • Sassner P, Martensson CG, Galbe M, Zacchi G (2008) Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresour Technol 99:137–145

    Article  PubMed  CAS  Google Scholar 

  • Shafiei M, Karimi K, Taherzadeh MJ (2010) Pretreatment of spruce and oak by N-methylmorpholine-N-oxide (NMMO) for efficient conversion of their cellulose to ethanol. Bioresour Technol 101:4914–4918

    Article  PubMed  CAS  Google Scholar 

  • Shafiei M, Karimi K, Taherzadeh MJ (2011) Techno-economical study of ethanol and biogas from spruce wood by NMMO-pretreatment and rapid fermentation and digestion. Bioresour Technol 102:7879–7886

    Article  PubMed  CAS  Google Scholar 

  • Shafiei M, Ziluoei H, Zamani A, Taherzadeh MJ, Karimi K (2012) Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Appl Energy

    Google Scholar 

  • Shafizadeh F (1963) Acidic hydrolysis of glucosidic bonds. Tappi J 46:381–383

    CAS  Google Scholar 

  • Shah MM, Song SK, Lee YY, Torget R (1991) Effect of pretreatment on simultaneous saccharification and fermentation of hardwood into acetone/butanol. Appl Biochem Biotechnol 28–29:99–109

    Article  PubMed  Google Scholar 

  • Shen J, Wyman CE (2011) A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover. Bioresour Technol 102:9111–9120

    Article  PubMed  CAS  Google Scholar 

  • Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K (1988) Steam-explosion treatment of wood. Kami Pa Gikyoshi 42:1114–1130

    CAS  Google Scholar 

  • Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin I, Agrawal PK, Jones CW (2009) Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res 48:1277–1286

    Article  CAS  Google Scholar 

  • Silva ASA, Lee SH, Endo T, Bon EP (2011) Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim][Ac]). Bioresour Technol 102:10505–10509

    Article  CAS  Google Scholar 

  • Singh A, Tuteja S, Singh N, Bishnoi NR (2011) Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresour Technol 102:1773–1782

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom E (1977) The behavior of wood polysaccharides during alkaline pulping process. Tappi J 60:151–154

    CAS  Google Scholar 

  • Soderstrom J, Pilcher L, Galbe M, Zacchi G (2003) Combined use of H2SO4 and SO2 impregnation for steam pretreatment of spruce in ethanol production. Appl Biochem Biotechnol 105–108:127–140

    Article  PubMed  Google Scholar 

  • Stone J E, Scallan A M, Donefer E, Ahlgren E (1969) Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. In: Hajny GJ, Reese ET (eds) Cellulases and their applications, vol 95, American Chemical Society, pp 219–241

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96:1599–1606

    Article  PubMed  CAS  Google Scholar 

  • Swatloski RP, Visser AE, Reichert WM, Broker GA, Farina LM, Holbrey JD, Rogers RD (2001) Solvation of 1-butyl-3-methylimidazolium hexafluorophosphate in aqueous ethanol-a green solution for dissolving ‘hydrophobic’ ionic liquids. Chem Commun (Camb) 2070–2071

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:472–499

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed  CAS  Google Scholar 

  • Takai M, Colvin R (1978) Mechanism of transition between cellulose I and cellulose II during mercerization. J Polym Sci: Polym Chem Ed 16:1335–1342

    Article  CAS  Google Scholar 

  • Tao F, Song H, Chou L (2010) Hydrolysis of cellulose by using catalytic amounts of FeCl2 in ionic liquids. Chem Sus Chem 3:1298–1303

    CAS  Google Scholar 

  • Tarkow H, Feist W (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. Adv Chem Ser 95:197–218

    Article  CAS  Google Scholar 

  • Teghammar A, Yngvesson J, Lundin M, Taherzadeh MJ, Horvath IS (2010) Pretreatment of paper tube residuals for improved biogas production. Bioresour Technol 101:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Teghammar A, Karimi K, Sárvári Horváth I, Taherzadeh MJ (2012) Enhanced biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass Bioenergy 36:116–120

    Article  CAS  Google Scholar 

  • Teixeira LC, Linden JC, Schroeder HA (2000) Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl Biochem Biotechnol 84–86:111–127

    Article  PubMed  Google Scholar 

  • Teleman A, Harjunpaa V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Characterisation of 4-deoxy-beta-L-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. Carbohydr Res 272:55–71

    Article  PubMed  CAS  Google Scholar 

  • Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    Article  PubMed  CAS  Google Scholar 

  • Titchener AL, Guha BK (1981) Acid hydrolysis of wood. Report—new zealand energy research and development committee, vol 56, p 63

    Google Scholar 

  • Torget R, Himmel ME, Grohmann K (1991) Dilute sulfuric acid pretreatment of hardwood bark. Bioresour Technol 35:239–246

    Article  CAS  Google Scholar 

  • Tosun A (1995) Dilute acid hydrolysis of sunflower residue (cellulosic wastes) prior to enzymatic hydrolysis. 8th international symposium on environmental pollution and its impact on life in the mediterranean region, Rhodes, Greece, pp 296–301

    Google Scholar 

  • Uju Y, Nakamoto A, Goto M, Tokuhara W, Noritake Y, Katahira S, Ishida N, Nakashima K, Ogino C, Kamiya N (2012) Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresour Technol 103:446–452

    Google Scholar 

  • Um BH, Karim M, Henk L (2003) Effect of sulfuric and phosphoric acid pretreatments on enzymatic hydrolysis of corn stover. Appl Biochem Biotechnol 105–108:115–125

    Article  PubMed  Google Scholar 

  • Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA (2010) Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol 76:3236–3243

    Article  PubMed  CAS  Google Scholar 

  • Wald S, Wilke CR, Blanch HW (1984) Kinetics of the enzymatic hydrolysis of cellulose. Biotechnol Bioeng 26:221–230

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Spratling BM, ZoBell DR, Wiedmeier RD, McAllister TA (2004) Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J Anim Sci 82:198–208

    PubMed  CAS  Google Scholar 

  • Wang K, Yang HY, Xu F, Sun RC (2011) Structural comparison and enhanced enzymatic hydrolysis of the cellulosic preparation from Populus tomentosa Carr., by different cellulose-soluble solvent systems. Bioresour Technol 102:4524–4529

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M, Tokuyasu K (2011a) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102:4793–4799

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Li Y, Arakane M, Ike M, Wada M, Terajima Y, Ishikawa S, Tokuyasu K (2011b) Efficient conversion of sugarcane stalks into ethanol employing low temperature alkali pretreatment method. Bioresour Technol 102:11183–11188

    Article  PubMed  CAS  Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington

    Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352

    Article  PubMed  Google Scholar 

  • Xu F, Sun JX, Liu CF, Sun RC (2006) Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr Res 341:253–261

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–95

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26–40

    Article  CAS  Google Scholar 

  • Yang B, Dai Z, Ding SY, Wyman C (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450

    Article  CAS  Google Scholar 

  • Yoneda Y, Krainz K, Liebner F, Potthast A, Rosenau T, Karakawa M, Nakatsubo F (2008) Furan endwise peeling of celluloses: mechanistic studies and application perspectives of a novel reaction. Eur J Org Chem 2008:475–484

    Article  CAS  Google Scholar 

  • Yu J, Zhang J, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908

    Article  PubMed  CAS  Google Scholar 

  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno)-cellulose. Bioresour Technol 100:2580–2587

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Lynd LR (2005) Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules 6:1510–1515

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Du H, Qian X, Chen EYX (2010) Ionic liquid—water mixtures: enhanced Kw for efficient cellulosic biomass conversion. Energy Fuel 24:2410–2417

    Article  CAS  Google Scholar 

  • Zhao X, Liu D (2011) Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose. Sheng Wu Gong Cheng Xue Bao 27:384–392

    PubMed  CAS  Google Scholar 

  • Zhao H, Baker GA, Song Z, Olubajo O, Crittle T, Peters D (2008a) Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Zhu JY, Ragauskas A, Deng Y (2008b) Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnol Bioeng 99:13201328

    Article  CAS  Google Scholar 

  • Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN (2009) Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J Biotechnol 139:47–54

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Baker GA, Cowins JV (2010) Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids. Biotechnol Progress 26:127–133

    CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68

    CAS  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Lee YY, Elander RT (2005) Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl Biochem Biotechnol 121–124:1045–1054

    Article  PubMed  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keikhosor Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karimi, K., Shafiei, M., Kumar, R. (2013). Progress in Physical and Chemical Pretreatment of Lignocellulosic Biomass. In: Gupta, V., Tuohy, M. (eds) Biofuel Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34519-7_3

Download citation

Publish with us

Policies and ethics