Skip to main content

Radioisotope Labeled Molecular Imaging in SPECT

  • Chapter
Molecular Imaging

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 3675 Accesses

Abstract

SPECT is the abbreviation of Single Photon Emission Computerized Tomography, which is one of the imaging modalities in the detection of a single energy Gamma-ray emitted from the inside of the imaged subject. The single energy Gamma-ray is emitted from a site in the imaged subject where the radiation isotope labeled agent is located. The agent is called a molecular probe, which is metabolized automatically in the imaged subject of the human or animal. The data are acquired by a detector system supported by a gantry surrounding the imaged subject in a continuous or a step-by-step mode, such as in a circular orbit. These data will be reconstructed to become images, from which one can get the information about the imaged subject regarding its normal anatomy and physiology or abnormal morphology and physiological pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vastenhouw, B. & F. Beekman (2007). “Submillimeter total-body murine imaging with U-SPECT-I”, Journal of Nuclear Medicine 48(3): 487–493.

    PubMed  Google Scholar 

  2. Frans, van der Have, B. Vastenhouw, R. M. Ramakers et al. (2009). “U-SPECT-II: An ultra-high-resolution device for molecular small-animal imaging”, Journal of Nuclear Medicine 50(4): 599–605.

    Article  Google Scholar 

  3. Schramm, N., et al. “HiSPECT, high-resolution multiple pinhole SPECT”, Research Center Jülich, Germany, http://appnotes.spect-ct.com.

    Google Scholar 

  4. Hyunki, K., L. R. Furenlid & M. J. Crawford et al. (2006). “SemiSPECT: A small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays”, Medical Physics 33(2): 465–474.

    Article  Google Scholar 

  5. Meng, L. J., G. Fu, et al. (2009). “An ultrahigh resolution SPECT system for I-125 mouse brain imaging studies”, Nuclear Instruments and Methods in Physics Research A 600: 498–505.

    Article  CAS  Google Scholar 

  6. Ma, T., R. Yao, et al. (2008). “SPECT mouse imaging on a hybrid micro-PET/SPECT system”, The Journal of Nuclear Medicine 49: 119.

    Google Scholar 

  7. Ma, T., R. Yao, Y. Shao & R. Zhou (2007). “Determination of geometrical parameters for slit-slat SPECT imaging on MicroPET”, IEEE Nuclear Science Symposium Conference Record 6: 4285–4288.

    Google Scholar 

  8. Ma, T. & Y. Jin (2006). “SPECT system analysis modeling method based on Boltzmann transfer equation”, High Energy Physics and Nuclear Physics 30(8): 806–811.

    CAS  Google Scholar 

  9. Qi, Y. (2006). “High-resolution SPECT for small-animal imaging”, Nuclear Science and Techniques: 17: 164–169.

    Article  Google Scholar 

  10. Cai, B., W. Cao & S. Bao (2008). “Chinese invent patent: New positioning Method of γ-ray event on SPECT detector”, Application Number: 20081024-7569.2.

    Google Scholar 

  11. Anger, H. O. (1958). “Scintillation camera”, Review of Scientific Instruments 29: 27-33.

    Google Scholar 

  12. Gray, R. M. & A. Macovski (1976). “Maximum a posteriori estimation of position in scintillation cameras”, IEEE Transactions on Nuclear Science 23: 849–852.

    Article  Google Scholar 

  13. Regers, W. L. (1989). “Experimental evaluation of a modular Scintillation Camera for SPECT”, IEEE Transactions on Nuclear Science 36: 1122–1126.

    Article  Google Scholar 

  14. Joung, J., et al. (2000). “Implementation of ML based positioning algorithms for scintillation cameras”, IEEE Transactions on Nuclear Science 47(3): 1104–1111.

    Article  Google Scholar 

  15. Anger, H. O. (1967). “Radioisotope cameras”, in Instrumentation in Nuclear Medicine. Academic.

    Google Scholar 

  16. Metzler, S., J. Bowsher, K. Greer & R. Jaszczak (2002). “Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration”, IEEE Transactions on Medical Imaging 21(8): 878–887.

    Article  PubMed  CAS  Google Scholar 

  17. Metzler, S., J. Bowsher, M. Smith & R. Jaszczak (2001). “Analytic determination of pinhole collimator sensitivity with penetration”, IEEE Transactions on Medical Imaging 20(8): 730–741.

    Article  PubMed  CAS  Google Scholar 

  18. Ji, C., B. Vastenhouw & F. J. Beekman (2010). “Fast multi-pinhole SPECT image reconstruction with multi-core CPUs”, The Journal of Nuclear Medicine 51: 1340.

    Google Scholar 

  19. Radon, J. (1917). “On the determination of functions from their integrals along certain manifolds (translated)”, Ber. Verbhandl. Sachs. Akad. Wiss. Leipzig Math-Phys 69: 262–277.

    Google Scholar 

  20. Jain, A. K. (1980). Fundamentals of Digital Image Processing. Prentice Hall.

    Google Scholar 

  21. Tretiak, O. & C. Metz (1980). “The exponential radon transform”, SIAM Journal on Applied Mathematics 39: 341–354.

    Article  Google Scholar 

  22. Metz, C. E. & X. C. Pan (1995). “A unified analysis of exact methods of inverting the 2D exponential radon transform, with implications for noise control in SPECT”, IEEE Transactions on Medical Imaging 14: 643–658.

    Article  PubMed  CAS  Google Scholar 

  23. Feldkamp, L. A., L. C. Davis & J. W. Kress (1984). “Practical cone-beam algorithm”, Journal of the Optical Society of America 1: 612–619.

    Article  Google Scholar 

  24. Wang, G., T. H. Lin, P. C. Cheng & D. M. Shinozaki (1993). “A general cone-beam reconstruction algorithm”, IEEE Transactions on Medical Imaging 12: 486–496.

    Article  PubMed  CAS  Google Scholar 

  25. Gordon, R., R. Bender & G. T. Herman (1970). “Algebraic reconstruction techniques (ART) for 3-dimensional electron microscopy and X-ray photography”, Journal of Theoretical Biology 29: 471–481.

    Article  PubMed  CAS  Google Scholar 

  26. Kinahan, P. E., S. Matej, J. S. Karp, G. T. Herman & R. M. Lewitt (1995). “A comparison of transform and iterative reconstruction techniques for a volume-imaging PET scanner with a large axial acceptance angle”, IEEE Transactions on Nuclear Science 42: 2281–2287.

    Article  Google Scholar 

  27. Hudson, H. M. & R. S. Larkin (1994). “Accelerated image reconstruction using ordered subsets of projection data”, IEEE Transactions on Medical Imaging 13: 601–609.

    Article  PubMed  CAS  Google Scholar 

  28. Dempster, A. D., N. M. Laird & D. B. Rubin (1977). “Maximum likelihood from incomplete data via the EM algorithm”, The Royal Statistical Society 39: 1–38.

    Google Scholar 

  29. Lalush, D. S. & B. M. W. Tsui (1998). “Block-iterative techniques for fast 4D reconstruction using a priori motion models in gated cardiac SPECT”, Physics in Medicine and Biology 43(4): 875–886.

    Article  PubMed  CAS  Google Scholar 

  30. Liang, Z., T. G. Turkington, D. R. Gilland, R. J. Jaszczak & R. E. Coleman (1992). “Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in 3 dimensions”, Physics in Medicine and Biology 37: 587–603.

    Article  PubMed  CAS  Google Scholar 

  31. King, M. & T. Farncombe (2003). “An overview of attenuation and scatter correction of planar and SPECT data for dosimetry studies”, Cancer biotherapy and radiopharmaceuticals 18: 181–190.

    Article  PubMed  Google Scholar 

  32. Jaszczak, R. J., R. E. Coleman & F. R. Whitehead (1981). “Physical factors affecting quantitative measurements using camera-based single photonemission computed-tomography (SPECT)”, IEEE Transactions on Nuclear Science 28: 69–80.

    Article  Google Scholar 

  33. Rosenthal, M. S., J. Cullom, W. Hawkins, S. C. Moore, B. M. W. Tsui & M. Yester (1995). “Quantitative SPECT imaging—a review and recommendations by the focus committee of the Society of Nuclear Medicine Computer and Instrumentation Council”, The Journal of Nuclear Medicine 36: 1489–1513.

    CAS  Google Scholar 

  34. Wilson, D. W. & B. M. W. Tsui (1993). “Noise properties of filtered backprojection and ML-EM reconstructed emission tomographic images”, IEEE Transactions on Nuclear Science 40: 1198–1203.

    Article  CAS  Google Scholar 

  35. Barrett, H. H., D. W. Wilson & B. M. W. Tsui (1994). “Noise properties of the EM algorithm: 1. Theory”, Physics in Medicine and Biology 39: 833–846.

    Article  PubMed  CAS  Google Scholar 

  36. Wilson, D. W., H. H. Barrett & B. M. W. Tsui (1994). “Noise properties of the EM algorithm: 2. Monte Carlo simulations”, IEEE Transactions on Medical Imaging 13: 601–609.

    Article  Google Scholar 

  37. Tsui, B. M. W., E. C. Frey, X. Zhao, D. S. Lalush, R. E. Johnston & W. H. McCartney (1994). “The importance and implementation of accurate 3D compensation methods for quantitative SPECT”, Physics in Medicine and Biology 39: 509–530.

    Article  PubMed  CAS  Google Scholar 

  38. Welch, A., G. T. Gullberg, P. E. Christian, F. L. Datz & T. Morgan (1995). “A transmission-map based scatter correction technique for SPECT in inhomogeneous-media”, Medical Physics 22: 1627–1635.

    Article  PubMed  CAS  Google Scholar 

  39. Beck, J. W., R. J. Jaszczak, R. E. Coleman, C. F. Starmer & L. W. Nolte (1982). “Analysis of SPECT including scatter and attenuation using sophisticated Monte-Carlo modeling methods”, IEEE Transactions on Nuclear Science 29: 506–511.

    Article  Google Scholar 

  40. Noo, F., R. Clackdoyle, et al. (2000). “Analytic method based on identification of ellipse parameters for scanner calibration in cone-beam tomography”, Physics in Medicine and Biology 45(11): 3489–3508.

    Article  PubMed  CAS  Google Scholar 

  41. Karolczak, M., S. Schaller, et al. (2001). “Implementation of a cone-beam reconstruction algorithm for the single-circle source orbit with embedded misalignment correction using homogeneous coordinates”, Medical Physics 28(10): 2050–2069.

    Article  PubMed  CAS  Google Scholar 

  42. Bequé, D., J. Nuyts, et al. (2003). “Characterization of pinhole SPECT acquisition geometry”, IEEE Transactions on Medical Imaging 22(5): 599–612.

    Article  PubMed  Google Scholar 

  43. Wang, Y. & B. M. W. Tsui (2007). “Pinhole SPECT with different data acquisition geometries: usefulness of unified projection operators in homogeneous coordinates”, IEEE Transactions on Medical Imaging 26(3): 298–308.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bao, S., Cao, W., Li, J. (2013). Radioisotope Labeled Molecular Imaging in SPECT. In: Molecular Imaging. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34303-2_7

Download citation

Publish with us

Policies and ethics