Skip to main content

Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We present distributed morphogenesis control strategies in a swarm of robots able to autonomously assemble into 3D symbiotic organisms to perform specific tasks. Each robot in such a system can work autonomously, while teams of robots can self-assemble into various morphologies when required. The idea is to combine the advantages of swarm and self-reconfigurable robotic systems in order to investigate and develop novel principles of development and adaptation for “robotic organisms”, from bio-inspired and evolutionary perspectives. Unlike other modular self-reconfigurable robotic systems, individual robots here are independently mobile and can autonomously dock to each other. The goal is that the robots initially form a certain 2D planar structure and, based on their positions in the body plan, the aggregated “organism” should lift itself to form a 3D configuration, then move and function as a macroscopic whole. It should also be able to disassemble and reassemble into different morphologies to fulfil certain task requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen, A., O’Grady, R., Dorigo, M.: Swarmorph-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2), 143–165 (2008). doi:10.1007/s11721-008-0012-6

    Article  Google Scholar 

  2. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz R.P. (ed.) Organic Computing, Understanding Complex Systems, vol. 21, pp. 167–199. Springer, Berlin (2008). doi:10.1007/978-3-540-77657-4_8

    Google Scholar 

  3. Gross, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008). doi:10.1109/JPROC.2008.927352

    Article  Google Scholar 

  4. Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359 (2008). doi:10.1016/j.robot.2007.08.006

    Article  Google Scholar 

  5. Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. Biosystems 98(3), 193–203 (2009). doi:10.1016/j.biosystems.2009.05.003

    Article  Google Scholar 

  6. Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: the next-generation-platform for on-line and on-board artificial evolution. In: Proceedings of IEEE congress on Evolutionary Computation, pp. 1079–1086. Trondheim, Norway (2009). doi:10.1109/CEC.2009.4983066

  7. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)

    Google Scholar 

  8. Liu, W., Winfield, A.: Implementation of an IR approach for autonomous docking in a self-configurable robotics system. In: Kyriacou, T. Nehmzow, U. Melhuish, C. Witkowski, M. (eds.) Proceedings of Towards Autonomous Robotic Systems, pp. 251–258 (2009)

    Google Scholar 

  9. Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system. IEEE Robot. Autom. Mag. 14(4), 56–63 (2007). doi:10.1109/M-RA.2007.908984

    Article  Google Scholar 

  10. Nagpal, R.: Programmable self-assembly: constructing global shape using biologically-inspired local interactions and origami mathematics. Ph.D. Thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  11. Rubenstein, M., Payne, K., Will, P., Shen, W.M.: Docking among independent and autonomous conro self-reconfigurable robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2877–2882 (2004). doi:10.1109/ROBOT.2004.1307497

  12. Salemi, B., Moll, M., Shen, W.M.: SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In: Proceedings of Intenational Conference on Intelligent Robots and Systems, pp. 3636–3641. Beijing, China (2006)

    Google Scholar 

  13. Støy, K.: Using cellular automata and gradients to control self-reconfiguration. Robot. Auton. Syst. 54, 135–141 (2006). doi:10.1016/j.robot.2005.09.017

    Article  Google Scholar 

  14. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2–4), 189–208 (2008). doi:10.1007/s11721-008-0014-4

    Article  Google Scholar 

  15. Werfel, J.: Biologically realistic primitives for engineered morphogenesis. In: the Seventh International Conference on Swarm Intelligence (ANTS2010), pp. 131–142. Springer, Belgium (2010). doi:10.1007/978-3-642-15461-4_12

    Google Scholar 

  16. Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–5631. Springer, New York (2009). doi:10.1007/978-0-387-30440-3_334

    Google Scholar 

  17. Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with polybot. IEEE/ASME Trans. Mechatron. 7(4), 442–451 (2002). doi:10.1109/TMECH.2002.806221

    Article  Google Scholar 

Download references

Acknowledgments

The SYMBRION project is funded by the European Commission within the work programme Future and Emergent Technologies Proactive under grant agreement no. 216342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, W., Winfield, A.F.T. (2012). Distributed Autonomous Morphogenesis in a Self-Assembling Robotic System. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics