Skip to main content

Revisiting the Training of Logic Models of Protein Signaling Networks with ASP

  • Conference paper
Computational Methods in Systems Biology (CMSB 2012)

Abstract

A fundamental question in systems biology is the construction and training to data of mathematical models. Logic formalisms have become very popular to model signaling networks because their simplicity allows us to model large systems encompassing hundreds of proteins. An approach to train (Boolean) logic models to high-throughput phospho-proteomics data was recently introduced and solved using optimization heuristics based on stochastic methods. Here we demonstrate how this problem can be solved using Answer Set Programming (ASP), a declarative problem solving paradigm, in which a problem is encoded as a logical program such that its answer sets represent solutions to the problem. ASP has significant improvements over heuristic methods in terms of efficiency and scalability, it guarantees global optimality of solutions as well as provides a complete set of solutions. We illustrate the application of ASP with in silico cases based on realistic networks and data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, I., Babur, O., Anwar, N., Schultz, N., Bader, G.D., Sander, C.: Pathway Commons, a web resource for biological pathway data. Nucleic Acids Research 39(Database issue), D685–D690 (2011)

    Article  Google Scholar 

  2. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the Pathway Interaction Database. Nucleic Acids Research 37(Database issue), D674–D679 (2009)

    Article  Google Scholar 

  3. Zinovyev, A., Viara, E., Calzone, L., Barillot, E.: BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24(6), 876–877 (2008)

    Article  Google Scholar 

  4. Guziolowski, C., Kittas, A., Dittmann, F., Grabe, N.: Automatic generation of causal networks linking growth factor stimuli to functional cell state changes. FEBS Journal (2012)

    Google Scholar 

  5. Palmisano, G., Thingholm, T.E.: Strategies for quantitation of phosphoproteomic data. Expert Review Of Proteomics 7(3), 439–456 (2010)

    Article  Google Scholar 

  6. Terfve, C., Saez-Rodriguez, J.: Modeling Signaling Networks Using High-throughput Phospho-proteomics. Advances in Experimental Medicine and Biology 736, 19–57 (2012)

    Article  Google Scholar 

  7. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007)

    Article  Google Scholar 

  8. Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., Guthke, R.: Gene regulatory network inference: data integration in dynamic models-a review. Bio Systems 96(1), 86–103 (2009)

    Article  Google Scholar 

  9. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Molecular Systems Biology 5(331), 331 (2009)

    Google Scholar 

  10. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.: Crowdsourcing network inference: the DREAM predictive signaling network challenge. Sci. Signal 4(189), mr7 (2011)

    Google Scholar 

  11. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)

    Google Scholar 

  12. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving, pp. 386–392 (2007)

    Google Scholar 

  13. Mitsos, A., Melas, I., Siminelakis, P., Chairakaki, A., Saez-Rodriguez, J., Alexopoulos, L.G.: Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data. PLoS Comp. Biol. 5(12), e1000591 (2009)

    Google Scholar 

  14. Klamt, S., Haus, U.U., Theis, F.J.: Hypergraphs and Cellular Networks. PLoS Comput. Biol. 5(5), e1000385 (2009)

    Google Scholar 

  15. Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(1), 56 (2006)

    Article  Google Scholar 

  16. Saez-Rodriguez, J., Simeoni, L., Lindquist, J., Hemenway, R., Bommhardt, U., Arndt, B., Haus, U.U., Weismantel, R., Gilles, E., Klamt, S., Schraven, B.: A Logical Model Provides Insights into T Cell Receptor Signaling. PLoS Comput. Biol. 3(8), e163 (2007)

    Google Scholar 

  17. Christensen, T.S., Oliveira, A.P., Nielsen, J.: Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Systems Biology 3, 7 (2009)

    Article  Google Scholar 

  18. Tsang, E.: Foundations of constraint satisfaction. Academic Pr. (1993)

    Google Scholar 

  19. Haus, U.U., Niermann, K., Truemper, K., Weismantel, R.: Logic integer programming models for signaling networks. J. Comput. Biol. 16(5), 725–743 (2009)

    Article  MathSciNet  Google Scholar 

  20. Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the Input Language of ASP Grounder Gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 502–508. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Morris, M.K., Saez-Rodriguez, J., Clarke, D.C., Sorger, P.K., Lauffenburger, D.A.: Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput. Biol. 7(3), e1001099 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Videla, S. et al. (2012). Revisiting the Training of Logic Models of Protein Signaling Networks with ASP. In: Gilbert, D., Heiner, M. (eds) Computational Methods in Systems Biology. CMSB 2012. Lecture Notes in Computer Science(), vol 7605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33636-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33636-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33635-5

  • Online ISBN: 978-3-642-33636-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics