Skip to main content

Modeling Signaling Networks Using High-throughput Phospho-proteomics

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 3454 Accesses

Abstract

Cellular communication and information processing is performed by complex, dynamic, and context specific signaling networks. Mathematical modeling is a very useful tool to make sense of this complexity. Building a model relies on two main ingredients: data and an adequate model formalism. In the case of signaling networks, we build mainly upon data at the proteome level, in particular about the phosphorylation of proteins. In this chapter we review recent developments in both data acquisition and computational analysis. We describe two approaches, antibody based technologies and mass spectrometry (MS), along with their main features and limitations. We then go on to describe some model formalisms that have been applied to such high-throughput phospho-proteomics data sets. We consider a variety of formalisms from clustering and data mining approaches to differential equation-based mechanistic models, rule-based, and logic based models, and on through Bayesian network inference and linear regressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203, DOI 10.1038/ncb1497, URL http://dx.doi.org/10.1038/ncb1497

  2. Alexopoulos LG, Saez-Rodriguez J, Espelin CW (2009) High-throughput protein-based technologies and computational models for drug development, efficacy, and toxicity. John Wiley and Sons, Inc., New Jersey, pp 29–52. DOI 10.1002/9780470431818.ch2, URL http://dx.doi.org/10.1002/9780470431818.ch2

  3. Alexopoulos LG, Saez-Rodriguez J, Cosgrove BD, Lauffenburger DA, Sorger PK (2010) Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes. Mol Cell Proteom MCP 9(9):1849–1865, DOI 10.1074/mcp.M110.000406, URL http://www.ncbi.nlm.nih.gov/pubmed/20460255, PMID: 20460255

  4. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78, DOI 10.1038/msb4100120, URL http://www.ncbi.nlm.nih.gov/pubmed/17299415, PMID: 17299415

  5. Birtwistle MR, Kholodenko BN (2009) Endocytosis and signalling: a meeting with mathematics. Mol Oncol 3(4):308–320, DOI 10.1016/j.molonc.2009.05.009, URL http://www.ncbi.nlm.nih.gov/pubmed/19596615, PMID: 19596615

    Article  Google Scholar 

  6. Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D, Pedrioli PG, Gerrits B, Picotti P, Lam H, Vitek O, Brusniak M, Roschitzki B, Zhang C, Shokat KM, Schlapbach R, Colman-Lerner A, Nolan GP, Nesvizhskii AI, Peter M, Loewith R, von Mering C, Aebersold R (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci Signal 3(153):rs4, DOI 10.1126/scisignal.2001182, URL http://www.ncbi.nlm.nih.gov/pubmed/21177495, PMID: 21177495

    Google Scholar 

  7. Borisov NM, Markevich NI, Hoek JB, Kholodenko BN (2005) Signaling through receptors and scaffolds: independent interactions reduce combinatorial complexity. Biophys J 89(2):951–966, DOI 10.1529/biophysj.105.060533, URL http://www.ncbi.nlm.nih.gov/pubmed/15923229, PMID: 15923229

    Article  Google Scholar 

  8. Brosch M, Choudhary J (2010) Scoring and validation of tandem MS peptide identification methods. Meth Mol Biol (Clifton, NJ) 604:43–53, DOI 10.1007/978-1-60761-444-9{ _}4, URL http://www.ncbi.nlm.nih.gov/pubmed/20013363, PMID: 20013363

  9. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239, DOI 10.1038/msb.2008.74, URL http://www.ncbi.nlm.nih.gov/pubmed/19156131, PMID: 19156131

  10. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439, DOI 10.1038/nrm2900, URL http://dx.doi.org/10.1038/nrm2900

  11. Ciaccio MF, Wagner JP, Chuu C, Lauffenburger DA, Jones RB (2010) Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Meth 7(2):148–155, DOI 10.1038/nmeth.1418, URL http://dx.doi.org/10.1038/nmeth.1418

    Article  Google Scholar 

  12. Conzelmann H, Saez-Rodriguez J, Sauter T, Kholodenko BN, Gilles ED (2006) A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7:34, DOI 10.1186/1471-2105-7-34, URL http://www.ncbi.nlm.nih.gov/pubmed/16430778, PMID: 16430778

  13. Cutillas P, Jorgensen C (2011) Biological signalling activity measurements using mass spectrometry. Biochem J 434(2):189–199, DOI 10.1042/BJ20101974, URL http://www.biochemj.org/bj/434/bj4340189.htm

  14. Danos V, Feret J, Fontana W, Harmer R, Krivine J, Biosystems P, Suprieure EN, Polytechnique E (2007) Rule-based modelling of cellular signalling. Proc of the 18th Int Conf on Concurrency Theory (CONCUR07), Lecture Notes in Computer Science 4703:17–41, URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.228

  15. Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, Sicheritz-Ponten T, Blom N, Gibson T (2004) Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics 5(1):79, DOI 10.1186/1471-2105-5-79, URL http://www.biomedcentral.com/1471-2105/5/79

  16. Duvenaud D, Eaton D, Murphy K, Schmidt M (2009) Causal learning without DAGs. JMLR J Mach Learn Res URL http://jmlr.csail.mit.edu/proceedings/papers/v6/duvenaud10a/d%uvenaud10a.pdf

    Google Scholar 

  17. Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Meth Mol Biol (Clifton, NJ) 500:113–167, DOI 10.1007/978-1-59745-525-1{ _}5, URL http://www.ncbi.nlm.nih.gov/pubmed/19399430, PMID: 19399430

    Article  CAS  Google Scholar 

  18. Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Internal coarse-graining of molecular systems. Proc Natl Acad Sci USA 106(16):6453–6458, DOI 10.1073/pnas.0809908106, URL http://www.ncbi.nlm.nih.gov/pubmed/19346467, PMID: 19346467

    Article  Google Scholar 

  19. Gat-Viks I, Shamir R (2007) Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res 17(3):358–367, DOI 10.1101/gr.5750507, URL http://www.ncbi.nlm.nih.gov/pubmed/17267811, PMID: 17267811

    Article  Google Scholar 

  20. Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, Sorger PK (2005) A compendium of signals and responses triggered by prodeath and prosurvival cytokines. Mol Cell Proteom MCP 4(10):1569–1590, DOI 10.1074/mcp.M500158-MCP200, URL http://www.ncbi.nlm.nih.gov/pubmed/16030008, PMID: 16030008

  21. Gnad F, Ren S, Cox J, Olsen JV, Macek B, Oroshi M, Mann M (2007) PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol 8(11):R250, DOI 10.1186/gb-2007-8-11-r250, URL http://www.ncbi.nlm.nih.gov/pubmed/18039369, PMID: 18039369

  22. Gouw JW, Krijgsveld J, Heck AJR (2010) Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteom MCP 9(1):11–24, DOI 10.1074/mcp.R900001-MCP200, URL http://www.ncbi.nlm.nih.gov/pubmed/19955089, PMID: 19955089

    Article  Google Scholar 

  23. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10(9):617–627, DOI 10.1038/nrg2633, URL http://dx.doi.org/10.1038/nrg2633

  24. Harrison C (2008) High-content screening: integrating information. Nat Rev Drug Discov 7(2):121, DOI 10.1038/nrd2522, URL http://dx.doi.org/10.1038/nrd2522

    Article  Google Scholar 

  25. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (2006) Rules for modeling signal-transduction systems. Science’s STKE: Signal Transduct Knowl Environ 2006(344):re6, DOI 10.1126/stke.3442006re6, URL http://www.ncbi.nlm.nih.gov/pubmed/16849649, PMID: 16849649

  26. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4(6):1551–1561, DOI 10.1002/pmic.200300772, URL http://www.ncbi.nlm.nih.gov/pubmed/15174125, PMID: 15174125

    Article  Google Scholar 

  27. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, Furnari FB, White FM (2007) Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA 104(31):12,867–12,872, DOI 10.1073/pnas.0705158104, URL http://www.ncbi.nlm.nih.gov/pubmed/17646646, PMID: 17646646

    Article  Google Scholar 

  28. Hyduke DR, Palsson B (2010) Towards genome-scale signalling-network reconstructions. Nat Rev Genet 11(4):297–307, DOI 10.1038/nrg2750, URL http://dx.doi.org/10.1038/nrg2750

    Article  Google Scholar 

  29. Janes KA, Albeck JG, Gaudet S, Sorger PK, Lauffenburger DA, Yaffe MB (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science (New York, NY) 310(5754):1646–1653, DOI 10.1126/science.1116598, URL http://www.ncbi.nlm.nih.gov/pubmed/16339439, PMID: 16339439

  30. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403, DOI 10.1038/nrm1939, URL http://www.ncbi.nlm.nih.gov/pubmed/16723975, PMID: 16723975

    Article  Google Scholar 

  31. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol: J Comput Mol Cell Biol 9(1):67–103, DOI 10.1089/10665270252833208, URL http://www.ncbi.nlm.nih.gov/pubmed/11911796, PMID: 11911796

    Google Scholar 

  32. Jorgensen C, Linding R (2010) Simplistic pathways or complex networks? Curr Opin Genet Dev 20(1):15–22, DOI 10.1016/j.gde.2009.12.003, URL http://www.ncbi.nlm.nih.gov/pubmed/20096559, PMID: 20096559

  33. Jorgensen C, Sherman A, Chen GI, Pasculescu A, Poliakov A, Hsiung M, Larsen B, Wilkinson DG, Linding R, Pawson T (2009) Cell-specific information processing in segregating populations of eph receptor ephrin-expressing cells. Science (New York, NY) 326(5959):1502–1509, DOI 10.1126/science.1176615, URL http://www.ncbi.nlm.nih.gov/pubmed/20007894, PMID: 20007894

  34. Joughin BA, Cheung E, Karuturi RKM, Saez-Rodriguez J, Lauffenburger DA, Liu ET (2010) Cellular regulatory networks, systems biomedicine – Chapter 4. Academic Press, San Diego, pp 57–108, DOI 10.1016/B978-0-12-372550-9.00004-3, URL http://www.sciencedirect.com/science/article/pii/B9780123725509000043

  35. Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224(5215):177–178, URL http://www.ncbi.nlm.nih.gov/pubmed/5343519, PMID: 5343519

  36. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176, DOI 10.1038/nrm1838, URL http://www.ncbi.nlm.nih.gov/pubmed/16482094, PMID: 16482094

    Article  Google Scholar 

  37. Krueger M, Kratchmarova I, Blagoev B, Tseng Y, Kahn CR, Mann M (2008) Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci USA 105(7):2451–2456, DOI 10.1073/pnas.0711713105, URL http://www.ncbi.nlm.nih.gov/pubmed/18268350, PMID: 18268350

    Article  Google Scholar 

  38. Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. In: Robinson JP, Darzynkiewicz Z, Dobrucki J, Hyun WC, Nolan JP, Orfao A, Rabinovitch PS (eds) Current protocols in cytometry. John Wiley & Sons, Inc., Hoboken, NJ, USA, URL http://www.currentprotocols.com/protocol/cy0631

  39. Li P, Zhang C, Perkins EJ, Gong P, Deng Y (2007) Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatory networks. BMC Bioinformatics 8 Suppl 7:S13, DOI 10.1186/1471-2105-8-S7-S13, URL http://www.ncbi.nlm.nih.gov/pubmed/18047712, PMID: 18047712

  40. Linding R, Jensen LJ, Ostheimer GJ, van Vugt MATM, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426, DOI 10.1016/j.cell.2007.05.052, URL http://www.ncbi.nlm.nih.gov/pubmed/17570479, PMID: 17570479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Malmstrm J, Lee H, Aebersold R (2007) Advances in proteomic workflows for systems biology. Curr Opin Biotechnol 18(4):378–384, DOI 10.1016/j.copbio.2007.07.005, URL http://www.ncbi.nlm.nih.gov/pubmed/17698335, PMID: 17698335

    Article  Google Scholar 

  42. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1:S7, DOI 10.1186/1471-2105-7-S1-S7, URL http://www.ncbi.nlm.nih.gov/pubmed/16723010, PMID: 16723010

  43. Markowetz F (2010) How to understand the cell by breaking it: network analysis of gene perturbation screens. PLoS Comput Biol 6(2):e1000,655, DOI 10.1371/journal.pcbi.1000655, URL http://www.ncbi.nlm.nih.gov/pubmed/20195495, PMID: 20195495

  44. Markowetz F, Spang R (2007) Inferring cellular networks – A review. BMC Bioinformatics 8 Suppl 6:S5, DOI 10.1186/1471-2105-8-S6-S5, URL http://www.ncbi.nlm.nih.gov/pubmed/17903286, PMID: 17903286

  45. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science (New York, NY) 316(5828):1160–1166, DOI 10.1126/science.1140321, URL http://www.ncbi.nlm.nih.gov/pubmed/17525332, PMID: 17525332

  46. Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2, DOI 10.1126/scisignal.1159433, URL http://www.ncbi.nlm.nih.gov/pubmed/18765831, PMID: 18765831

  47. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15):3216–3224, DOI 10.1021/bi902202q, URL http://www.ncbi.nlm.nih.gov/pubmed/20225868, PMID: 20225868

  48. Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA (2011) Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 7(3):e1001,099, DOI 10.1371/journal.pcbi.1001099, URL http://dx.doi.org/10.1371/journal.pcbi.1001099

  49. Mukherjee S, Speed TP (2008) Network inference using informative priors. Proc Natl Acad Sci 105(38):14,313–14,318, DOI 10.1073/pnas.0802272105, URL http://www.pnas.org/content/105/38/14313.abstract

    Google Scholar 

  50. Naegle KM, Gymrek M, Joughin BA, Wagner JP, Welsch RE, Yaffe MB, Lauffenburger DA, White FM (2010) PTMScout, a web resource for analysis of high throughput post-translational proteomics studies. Mol Cell Proteom MCP 9(11):2558–2570, DOI 10.1074/mcp.M110.001206, URL http://www.ncbi.nlm.nih.gov/pubmed/20631208, PMID: 20631208

  51. Nelander S, Wang W, Nilsson B, She Q, Pratilas C, Rosen N, Gennemark P, Sander C (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216, DOI 10.1038/msb.2008.53, URL http://www.ncbi.nlm.nih.gov/pubmed/18766176, PMID: 18766176

  52. Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteom MCP 4(10):1419–1440, DOI 10.1074/mcp.R500012-MCP200, URL http://www.ncbi.nlm.nih.gov/pubmed/16009968, PMID: 16009968

    Article  Google Scholar 

  53. Olsen JV, Mann M (2011) Effective representation and storage of mass Spectrometry-Based proteomic data sets for the scientific community. Sci Signal 4(160):pe7, DOI 10.1126/scisignal.2001839, URL http://stke.sciencemag.org/cgi/content/abstract/sigtrans;4/16%0/pe7

    Google Scholar 

  54. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648, DOI 10.1016/j.cell.2006.09.026, URL http://www.ncbi.nlm.nih.gov/pubmed/17081983, PMID: 17081983

    Article  Google Scholar 

  55. Ong S, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1(5):376 –386, DOI 10.1074/mcp.M200025-MCP200, URL http://www.mcponline.org/content/1/5/376.abstract

  56. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of s. cerevisiae by targeted proteomics. Cell 138(4):795–806, DOI 10.1016/j.cell.2009.05.051, URL http://www.ncbi.nlm.nih.gov/pubmed/19664813, PMID: 19664813

    Article  Google Scholar 

  57. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G (2010) Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PloS One 5(2):e9202, DOI 10.1371/journal.pone.0009202, URL http://www.ncbi.nlm.nih.gov/pubmed/20186320, PMID: 20186320

  58. Rosario AMD, White FM (2010) Quantifying oncogenic phosphotyrosine signaling networks through systems biology. Curr Opin Genet Dev 20(1):23–30, DOI 10.1016/j.gde.2009.12.005, URL http://www.ncbi.nlm.nih.gov/pubmed/20074929, PMID: 20074929

    Article  Google Scholar 

  59. Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal Protein-Signaling networks derived from multiparameter Single-Cell data. Science 308(5721):523 –529, DOI 10.1126/science.1105809, URL http://www.sciencemag.org/content/308/5721/523.abstract

    Article  Google Scholar 

  60. Saez-Rodriguez J, Goldsipe A, Muhlich J, Alexopoulos LG, Millard B, Lauffenburger DA, Sorger PK (2008) Flexible informatics for linking experimental data to mathematical models via DataRail. Bioinformatics 24(6):840 –847, DOI 10.1093/bioinformatics/btn018, URL http://bioinformatics.oxfordjournals.org/content/24/6/840.abstract

    Article  Google Scholar 

  61. Saez-Rodriguez J, Alexopoulos LG, Epperlein J, Samaga R, Lauffenburger DA, Klamt S, Sorger PK (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol Syst Biol 5:331, DOI 10.1038/msb.2009.87, URL http://www.ncbi.nlm.nih.gov/pubmed/19953085, PMID: 19953085

  62. Saez-Rodriguez J, Alexopoulos LG, Stolovitzky G (2011) Setting the standards for signal transduction research. Sci Signal 4(160):pe10, DOI 10.1126/scisignal.2001844, URL http://stke.sciencemag.org/cgi/content/abstract/sigtrans;4/16%0/pe10

    Google Scholar 

  63. Santos SDM, Verveer PJ, Bastiaens PIH (2007) Growth factor-induced MAPK network topology shapes erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330, DOI 10.1038/ncb1543, URL http://www.ncbi.nlm.nih.gov/pubmed/17310240, PMID: 17310240

  64. Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2(5):513–523, DOI 10.1002/1615-9861(200205)2:5⟨513::AID-PROT513⟩3.0.CO;2-W, URL http://www.ncbi.nlm.nih.gov/pubmed/11987125, PMID: 11987125

    Article  CAS  PubMed  Google Scholar 

  65. Sneddon MW, Faeder JR, Emonet T (2011) Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat Meth 8(2):177–183, DOI 10.1038/nmeth.1546, URL http://www.ncbi.nlm.nih.gov/pubmed/21186362, PMID: 21186362

    Article  Google Scholar 

  66. Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5(9):699–711, DOI 10.1038/nrm1468, URL http://www.ncbi.nlm.nih.gov/pubmed/15340378, PMID: 15340378

    Article  Google Scholar 

  67. Tan CSH, Jrgensen C, Linding R (2010) Roles of “junk phosphorylation” in modulating biomolecular association of phosphorylated proteins? Cell Cycle (Georgetown, Tex) 9(7):1276–1280, URL http://www.ncbi.nlm.nih.gov/pubmed/20234177, PMID: 20234177

  68. Tanner SD, Ornatsky O, Bandura DR, Baranov VI (2007) Multiplex bio-assay with inductively coupled plasma mass spectrometry: towards a massively multivariate single-cell technology. Spectrochim Acta B 62(3):188–195, DOI 10.1016/j.sab.2007.01.008, URL http://www.sciencedirect.com/science/article/B6THN-4N0HJDH-1/%2/05bbd4e8f7b003df4d258be40015b7ba

    Article  Google Scholar 

  69. Taylor CF, Field D, Sansone S, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz P, Bogue M, Booth T, Brazma A, Brinkman RR, Clark AM, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Novere NL, Leebens-Mack J, Lewis SE, Lord P, Mallon A, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896, DOI 10.1038/nbt.1411, URL http://dx.doi.org/10.1038/nbt.1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thompson A, Schfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904, DOI 10.1021/ac0262560, URL http://dx.doi.org/10.1021/ac0262560

  71. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Meth 243(1–2):243–255, URL http://www.ncbi.nlm.nih.gov/pubmed/10986418, PMID: 10986418

  72. Vizcano JA, Ct R, Reisinger F, Foster JM, Mueller M, Rameseder J, Hermjakob H, Martens L (2009) A guide to the proteomics identifications database proteomics data repository. Proteomics 9(18):4276–4283, DOI 10.1002/pmic.200900402, URL http://www.ncbi.nlm.nih.gov/pubmed/19662629, PMID: 19662629

    Article  Google Scholar 

  73. Vogel C, de Sousa Abreu R, Ko D, Le S, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6, DOI 10.1038/msb.2010.59, URL http://dx.doi.org/10.1038/msb.2010.59

  74. Watterson S, Marshall S, Ghazal P (2008) Logic models of pathway biology. Drug Discov Today 13(9–10):447–456, DOI 10.1016/j.drudis.2008.03.019, URL http://www.ncbi.nlm.nih.gov/pubmed/18468563, PMID: 18468563

    Google Scholar 

  75. Wolf-Yadlin A, Sevecka M, MacBeath G (2009) Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol 13(4):398–405, DOI 10.1016/j.cbpa.2009.06.027, URL http://www.ncbi.nlm.nih.gov/pubmed/19660979, PMID: 19660979

    Article  Google Scholar 

  76. Wu F, Wang P, Zhang J, Young LC, Lai R, Li L (2010) Studies of phosphoproteomic changes induced by nucleophosmin-anaplastic lymphoma kinase (ALK) highlight deregulation of tumor necrosis factor (TNF)/Fas/TNF-related apoptosis-induced ligand signaling pathway in ALK-positive anaplastic large cell lymphoma. Mol Cell Proteom MCP 9(7):1616–1632, DOI 10.1074/mcp.M000153-MCP201, URL http://www.ncbi.nlm.nih.gov/pubmed/20393185, PMID: 20393185

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Saez-Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Terfve, C., Saez-Rodriguez, J. (2012). Modeling Signaling Networks Using High-throughput Phospho-proteomics. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_2

Download citation

Publish with us

Policies and ethics