Skip to main content

Enzymatic Production of Xylitol: Current Status and Future Perspectives

  • Chapter
  • First Online:
D-Xylitol

Abstract

Enzymatic production of bio-active compounds has several advantages over chemical synthesis. Enzymatic mediated reactions are generally considered safe, highly reproducible, economical and environmentally benign. Microbial mediated xylose fermentation for xylitol production is a conventional approach with several process complexities. Enzymatic conversion of xylose into xylitol offers a promising alternative towards the commercial production of xylitol on a large scale. This chapter will discuss enzymatic production (or in vitro) of xylitol with emphasis on enzymatic catalysis using coenzymes and their enzymatic regeneration methods. Furthermore, mechanisms of the enzymatic process, operational details, advantages and disadvantages in comparison with the traditional production methods of xylitol (chemical and microbial) have been discussed at length. Special emphasis is placed on the sustainable raw material alternatives for enzymatic production of xylitol using sugarcane bagasse as the main carbohydrate source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksu S, Arends IWCE, Hollmanna F (2009) A new regeneration system for oxidized nicotinamide cofactors. Adv Synth Catal 351:1211–1216

    Article  CAS  Google Scholar 

  • Baea SM et al (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microbial Technol 35:545–549

    Article  Google Scholar 

  • Barbosa MFS et al (1988) Screening of yeasts for production of xylitol from d-xylose and same factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251

    Article  CAS  Google Scholar 

  • Baudel HM, Zaror C, Abreu CAM (2005) Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach. Ind Crop Prod 21:309–315

    Google Scholar 

  • Bon EPS, Ferrara MA, Corvo ML (2008) Enzimas em Biotecnologia - Produção, Aplicação e Mercado (Enzymes in biotechnology: production, application and market). Interciência, Rio de Janeiro

    Google Scholar 

  • Branco RF et al (2007) Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochem 42:258–262

    Article  CAS  Google Scholar 

  • Branco RF, Santos JC, Silva SS (2011a) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenerg 35:3241–3246

    Article  CAS  Google Scholar 

  • Branco RF, Santos JC, Silva SS (2011b) A solid and sobust model for xylitol enzymatic production optimization. J Bioproces Biotechniques 1:1–6

    Google Scholar 

  • Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol 89:1289–1303

    Article  CAS  PubMed  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silva SS (2011a) The realm of cellulases in biorefinery development. Crit Rev Biotechnol. doi:10.3109/07388551.2011.595385

    PubMed  Google Scholar 

  • Chandel AK et al (2011b) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  Google Scholar 

  • Chandel AK, Silva SS, Carvalho W and Singh OV (2012) Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Google Scholar 

  • Chenault HK, Whitesides GM (1987) Regeneration of nicotinamide cofactors for use in organic-synthesis. Appl Biochem Biotechnol 14:147–197

    Article  CAS  PubMed  Google Scholar 

  • CONAB – Compania Nacional de Abastecimento (National supply company). Third survey of sugarcane sugar production, in Dec 2011. Available in http://www.conab.gov.br/OlalaCMS/uploads/arquivos/11_12_08_11_00_54_08.pdf

  • Cortez EV (2002) Extração líquido-líquido de xilose redutase e xilitol desidrogenase por micelas reversas. Thesis, Universidade de São Paulo

    Google Scholar 

  • Cortez EV et al (2004) Optimized extraction by cetyl trimethyl ammonium bromide reversed micelles of xylose reductase and xylitol dehydrogenase from Candida guilliermondii homogenate. J Chromatogr B 807:47–54

    Article  CAS  Google Scholar 

  • Crognale S et al (2008) Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzym Microbial Technol 42:445–449

    Article  CAS  Google Scholar 

  • Dawson M, Dixon T, Inkerman P (1990) Moisture loss from baled bagasse during storage. In: Proceedings of the Australian Society of Sugarcane Technologists 1990, pp 199–206

    Google Scholar 

  • Eguchi SY, Nishio N, Nagai S (1983) NADPH production from NADP+ by a formate-utilizing methanogenic bacterium. Agric Biol Chem 47:2941–2943

    Article  CAS  Google Scholar 

  • Faria LFF, Pereira JRN, Nobrega R (2002) Xylitol production from d-xylose in a membrane bioreactor. Desalination 149:231–236

    Article  CAS  Google Scholar 

  • Fernandes P (2010) Miniaturization in biocatalysis. Int J Mol Sci 11:858–879

    Article  CAS  PubMed  Google Scholar 

  • Frollini E, Pimenta MJA (1997) Lignin: utilization as a macromonomer in the synthesis of phenolic type resins. Anais da Associação Brasileira de Quimica (Anals Brazilian Chem Assoc) 46:43–49

    Google Scholar 

  • Itoh N, Mizuguchi N, Mabuchi M (1999) Production of chiral alcohols by enantioselective reduction with NADH-dependent phenylacetaldehyde reductase from Corynebacterium strain, ST-10. J Mol Catal B Enzym 6:41–50

    Google Scholar 

  • Kitpreechavanich V et al (1984) Conversion of d-xylose into xylitol by xylose redutase from Candida pelliculosa coupled with the oxiredutase system of methanogen strain Hu. Biotechnol Lett 6:651–656

    Article  CAS  Google Scholar 

  • Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B (2004) Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Biochemistry 43:4944–4954

    Article  CAS  PubMed  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  CAS  PubMed  Google Scholar 

  • Kula MR (1994) Enzyme catalyzed reductions of carbonyl groups. In: Gani R, Jorgensen S (eds) Proceedings of the Chiral Europe 1994 symposium, pp 27–33

    Google Scholar 

  • Kumari M, Chandel AK, Edula JR, Chandrasekhar G, Narasu ML, Rao LV (2009) Value-added enzymes: production technologies and commercialization. BioTechnol An Ind J 15:20–32

    Google Scholar 

  • Li Y, Ogolah HSO, Sawa Y (2012) l-Aspartate dehydrogenase: features and applications. Appl Microbiol Biotechnol 93:503–516

    Article  CAS  PubMed  Google Scholar 

  • Lima UA, Aquarone E, Borzani W, Schmidell W (2001) Biotecnologia industrial, vol 2. Edgard Blucher, São Paulo

    Google Scholar 

  • Mayr P, Nidetzky B, Klimacek M (2001) Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Biochemistry 40:10371–10381

    Article  PubMed  Google Scholar 

  • Mertens R et al (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B Enzym 24–25:39–52

    Article  Google Scholar 

  • Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD (1996) Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng 52:387–396

    Article  CAS  PubMed  Google Scholar 

  • Pandey A et al (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Biores Technol 74:69–80

    Google Scholar 

  • Rawat UB, Rao MB (1996) Purification, kinetic characterization and involvement of tryptophan residue at the NADPH binding site of xylose reductase from Neurospora crassa. Biochem Biophysic Acta 1293:222–230

    Article  Google Scholar 

  • Ruppert R, Herrmann S, Steckhan E (1988) Very efficient reduction of NAD(P)+ with formate catalyzed by cationic rhodium complexes. J Chem Soc Chem Commun 17:1150–1151

    Article  Google Scholar 

  • Sampaio FC et al (2006) Use of response surface methodology for optimization of xylitol production by the new yeast strain Debaryomyces hansenii UFV-170. J Food Eng 76:376–386

    Article  CAS  Google Scholar 

  • Santos JC et al (2005) Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem 40:113–118

    Article  CAS  Google Scholar 

  • Seelbach K et al (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 37:1377–1380

    Article  CAS  Google Scholar 

  • Silva SS, Vitolo M, Pessoa A Jr, Felipe MGA (1996) Xylose reductase and xylitol dehydrogenase activities of d-xylose-xylitol-fermenting Candida guilliermondii. J Basic Microbiol 36:88–95

    Article  Google Scholar 

  • Silva SS et al (2003) Use of fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem 38:903–907

    Article  CAS  Google Scholar 

  • Suzuki T et al (1999) Expression of xyrA gene encoding for d-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J Biosci Bioeng 87:280–284

    Article  CAS  PubMed  Google Scholar 

  • Wilson DK, Kavanagh KL, Klimacek M, Nidetzky B (2003) The xylose reductase (AKR2B5) structure: homology and divergence from other aldo/keto reductases and opportunities for protein engineering. Chem-Biol Inter 143(144):515–521

    Article  Google Scholar 

  • Woodyer R, Simurdiak M, van Der Donk WA, Zhao H (2005) Heterologous expression, purification, and characterization of a highly active xylose reductase from Neurospora crassa. Appl Environ Microbiol 71:1642–1647

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama SI et al (1995) Purification, characterization and structure analysis of NADPH-dependent d-xylose reductases from Candida tropicalis. J Ferment Bioeng 79:211–223

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant n 2005/02840-0 and 2005/02866-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo de Freitas Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Freitas Branco, R., Chandel, A.K., Silva, S.S.d. (2012). Enzymatic Production of Xylitol: Current Status and Future Perspectives. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_8

Download citation

Publish with us

Policies and ethics