Skip to main content

Transposable Element Exaptation in Plants

  • Chapter
  • First Online:
Plant Transposable Elements

Part of the book series: Topics in Current Genetics ((TCG,volume 24))

Abstract

While evolution is often understood exclusively in terms of adaptation, innovation often begins when a feature adapted for one function is co-opted for a different purpose, such as when feathers originally adapted for insulation became used for flight. Co-opted features are called exaptations. Transposable elements are often viewed as molecular parasites, yet they are frequently the source of evolutionary innovation. One way in which transposable elements contribute to evolution is that their sequences can be co-opted to perform phenotypically beneficial functions. Transposable element gene exaptations have contributed to major innovations such as the vertebrate adaptive immune system and the mammalian placenta. They also often become transcription factors, and transposable element-derived transcription factor binding sites can form new regulatory networks. In this chapter, we review transposable element coding sequence exaptations in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCA1:

Circadian clock-associated 1

CENP-B:

Centromere-associated protein B

dsRNA:

Double-stranded RNA

DTE:

Domesticated transposable element

ELF4:

Early flowering 4

En/Spm :

Enhancer/Suppressor mutator

FBS:

FHY3/FAR1 binding site

FHL:

FHY1-like

FHY1:

Far-red elongated hypocotyl 1

FHY3:

Far-red elongated hypocotyl 3

FRS:

FAR1-related sequence

hAT :

hobo/Ac/Tam

HY5:

Long hypocotyl 5

miRNA:

microRNA

MIR:

microRNA gene

MITE:

Miniature inverted-repeat transposable element

MUG:

MUSTANG

Muk:

Mu killer locus

MULE:

Mutator-like element

PB1:

Phox and Bem1

PHY:

Phytochrome

PIL5:

Phytochrome interacting factor 3-like 5

sRNA:

small RNA

TE:

Transposable element

TF:

Transcription factor

References

  • Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751

    Article  PubMed  CAS  Google Scholar 

  • Agren JA, Wright SI (2011) Co-evolution between transposable elements and their hosts: a major factor in genome size evolution? Chromosome Res 19:777–786

    Article  PubMed  CAS  Google Scholar 

  • Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin PF (2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18:2506–2516

    Article  PubMed  CAS  Google Scholar 

  • Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217

    Article  PubMed  CAS  Google Scholar 

  • Babu MM, Iyer LM, Balaji S, Aravind L (2006) The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res 34:6505–6520

    Article  PubMed  CAS  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Cisneros O, Herrera-Esparza R (2002) CENP-B is a conserved gene among vegetal species. Genet Mol Res 1:241–245

    PubMed  CAS  Google Scholar 

  • Baudry C, Malinsky S, Restituito M, Kapusta A, Rosa S, Meyer E, Betermier M (2009) PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia. Genes Dev 23:2478–2483

    Article  PubMed  CAS  Google Scholar 

  • Beauregard A, Curcio MJ, Belfort M (2008) The take and give between retrotransposable elements and their hosts. Annu Rev Genet 42:587–617

    Article  PubMed  CAS  Google Scholar 

  • Beck CR, Garcia-Perez JL, Badge RM, Moran JV (2011) LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12:187–215

    Article  PubMed  CAS  Google Scholar 

  • Benjak A, Forneck A, Casacuberta JM (2008) Genome-wide analysis of the “cut-and-paste” transposons of grapevine. PLoS One 3:e3107

    Article  PubMed  CAS  Google Scholar 

  • Biémont C (2010) A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics 186:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew J-L, Ruan Y, Wei C-L, Ng HH, Liu ET (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  PubMed  CAS  Google Scholar 

  • Britten R (2006) Transposable elements have contributed to thousands of human proteins. Proc Natl Acad Sci USA 103:1798–1803

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Davidson EH (1971) Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol 46:111–138

    Article  PubMed  CAS  Google Scholar 

  • Brookfield JF (1982) Interspersed repetitive DNA sequences are unlikely to be parasitic. J Theor Biol 94:281–299

    Article  PubMed  CAS  Google Scholar 

  • Brookfield JF (2005) The ecology of the genome—mobile DNA elements and their hosts. Nat Rev Genet 6:128–136

    Article  PubMed  CAS  Google Scholar 

  • Brosius J (1999) RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238:115–134

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas P (2005) An Arabidopsis hAT-like transposase is essential for plant development. Nature 436:282–284

    Article  PubMed  CAS  Google Scholar 

  • Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294

    PubMed  CAS  Google Scholar 

  • Bureau TE, Ronald PC, Wessler SR (1996) A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA 93:8524–8529

    Article  PubMed  CAS  Google Scholar 

  • Calarco JP, Martienssen RA (2011) Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev 21:134–139

    Article  PubMed  CAS  Google Scholar 

  • Cam HP, K-i N, Ebina H, Levin HL, Grewal SIS (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451:431–436

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Yeo G, Muotri A, Kuwabara T (2006) Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29:77–103

    Article  PubMed  CAS  Google Scholar 

  • Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3:e245

    Article  PubMed  CAS  Google Scholar 

  • Casola C, Hucks D, Feschotte C (2008) Convergent domestication of pogo-like transposases into centromere-binding proteins in fission yeast and mammals. Mol Biol Evol 25:29–41

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  PubMed  CAS  Google Scholar 

  • Cheng C-Y, Vogt A, Mochizuki K, Yao M-C (2010) A domesticated piggyBac transposase plays key roles in heterochromatin dynamics and DNA cleavage during programmed DNA deletion in Tetrahymena thermophila. Mol Biol Cell 21:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Clouaire T, Roussigne M, Ecochard V, Mathe C, Amalric F, Girard JP (2005) The THAP domain of THAP1 is a large C2CH module with zinc-dependent sequence-specific DNA-binding activity. Proc Natl Acad Sci USA 102:6907–6912

    Article  PubMed  CAS  Google Scholar 

  • Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AWC, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Consortium WTCC, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Udit S, Batzer MA, Feschotte C (2006) Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 103:8101–8106

    Article  PubMed  CAS  Google Scholar 

  • Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Véron G, Mulot B, Dupressoir A, Heidmann T (2012) From the Cover: Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl Acad Sci 109:E432–E441

    Article  PubMed  CAS  Google Scholar 

  • Cowan RK, Hoen DR, Schoen DJ, Bureau TE (2005) MUSTANG is a novel family of domesticated transposase genes found in diverse angiosperms. Mol Biol Evol 22:2084–2089

    Article  PubMed  CAS  Google Scholar 

  • d’Alençon E, Nègre N, Stanojcic S, Alassoeur B, Gimenez S, Léger A, Abd-Alla A, Juliant S, Fournier P (2011) Characterization of a CENP-B homolog in the holocentric Lepidoptera Spodoptera frugiperda. Gene 485:91–101

    Article  PubMed  CAS  Google Scholar 

  • Daniels SB, Peterson KR, Strausbaugh LD, Kidwell MG, Chovnick A (1990) Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124:339–355

    PubMed  CAS  Google Scholar 

  • Darwin C (1876) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Diao X, Freeling M, Lisch DR (2005) Horizontal transfer of a plant transposon. PLoS Biol 4:e5

    Article  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Dooner HK, Weil CF (2007) Give-and-take: interactions between DNA transposons and their host plant genomes. Curr Opin Genet Dev 17:486–492

    Article  PubMed  CAS  Google Scholar 

  • Edwards CA, Mungall AJ, Matthews L, Ryder E, Gray DJ, Pask AJ, Shaw G, Graves JAM, Rogers J, Consortium S, Dunham I, Renfree MB, Ferguson-Smith AC (2008) The evolution of the DLK1-DIO3 imprinted domain in mammals. PLoS Biol 6:e135

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub MP, Ettwiller L (2011) De novo genesis of enhancers in vertebrates. PLoS Biol 9:e1001188

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D, Carrington JC (2010) MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell 22:1074–1089

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff NV (1999) The suppressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4:11–19

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Jacobsen S (2010) Epigenetic reprogramming in plant and animal development. Science 330:622–627

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Jacobsen SE (2011) Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol 14:179–186

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  • Franchini LF, López-Leal R, Nasif S, Beati P, Gelman DM, Low MJ, de Souza FJS, Rubinstein M (2011) Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc Natl Acad Sci USA 108:15270–15275

    Article  PubMed  CAS  Google Scholar 

  • Fugmann SD (2010) The origins of the Rag genes—from transposition to V(D)J recombination. Semin Immunol 22:10–16

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  PubMed  CAS  Google Scholar 

  • Gotea V, Makalowski W (2006) Do transposable elements really contribute to proteomes? Trends Genet 22:260–267

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Eldredge N (1977) Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3:115–151

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Lloyd EA (1999) Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci USA 96:11904–11909

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation-a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Hammer SE (2005) Homologs of Drosophila P transposons were mobile in zebrafish but have been domesticated in a common ancestor of chicken and human. Mol Biol Evol 22:833–844

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch DR, Meyers BC, Shiu S-H, Jiang N (2009) The functional role of Pack-MULEs in rice inferred from purifying selection and expression profile. Plant Cell 21:25–38

    Article  PubMed  CAS  Google Scholar 

  • Haren L, Ton-Hoang B, Chandler M (1999) Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281

    Article  PubMed  CAS  Google Scholar 

  • Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531

    PubMed  CAS  Google Scholar 

  • Hoen DR, Park KC, Elrouby N, Yu Z, Mohabir N, Cowan RK, Bureau TE (2006) Transposon-mediated expansion and diversification of a family of ULP-like genes. Mol Biol Evol 23:1254–1268

    Article  PubMed  CAS  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108:2322–2327

    Article  PubMed  CAS  Google Scholar 

  • Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P (2011) The struggle for life of the genome’s selfish architects. Biol Direct 6:19

    Article  PubMed  Google Scholar 

  • Huda A, Bowen NJ, Conley AB, Jordan IK (2011) Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48

    Article  PubMed  CAS  Google Scholar 

  • Hudson ME, Ringli C, Boylan MT, Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13:2017–2027

    Article  PubMed  CAS  Google Scholar 

  • Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34:453–471

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR (2004a) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004b) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Ferguson AA, Slotkin RK, Lisch DR (2011) Pack-Mutator-like transposable elements (Pack-MULEs) induce directional modification of genes through biased insertion and DNA acquisition. Proc Natl Acad Sci USA 108:1537–1542

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Deng X (2007) A genome-wide transcriptional activity survey of rice transposable element-related genes. Genome Biol 8:R28

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  PubMed  CAS  Google Scholar 

  • Johnson LJ (2008) Selfish genetic elements favor the evolution of a distinction between soma and germline. Evolution 62:2122–2124

    Article  PubMed  Google Scholar 

  • Johnson LJ, Tricker PJ (2010) Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105:113–121

    Article  PubMed  CAS  Google Scholar 

  • Joly-Lopez Z, Forczek E, Hoen DR, Juretic N, Bureau TE (2012) A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana. PLoS Genet 8(9): e1002931. doi:10.1371/journal.pgen.1002931

    Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  • Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE (2005) The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 15:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Kaufman PD, Doll RF, Rio DC (1989) Drosophila P element transposase recognizes internal P element DNA sequences. Cell 59:359–371

    Article  PubMed  CAS  Google Scholar 

  • Khurana JS, Wang J, Xu J, Koppetsch BS, Thomson TC, Nowosielska A, Li C, Zamore PD, Weng Z, Theurkauf WE (2011) Adaptation to P element transposon invasion in Drosophila melanogaster. Cell 147:1551–1563

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24

    PubMed  CAS  Google Scholar 

  • Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833

    PubMed  CAS  Google Scholar 

  • King DG, Kashi Y (2007) Mutability and evolvability: indirect selection for mutability. Heredity 99:123–124

    Article  PubMed  CAS  Google Scholar 

  • King MC, Wilson AC (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Weinhofer-Molisch I (2010) Mechanisms and evolution of genomic imprinting in plants. Heredity 105:57–63

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (2009) Darwinian evolution in the light of genomics. Nucleic Acids Res 37:1011–1034

    Article  PubMed  CAS  Google Scholar 

  • Kunarso G, Chia N-Y, Jeyakani J, Hwang C, Lu X, Chan Y-S, Ng HH, Bourque G (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed  CAS  Google Scholar 

  • Le Rouzic A, Deceliere G (2005) Models of the population genetics of transposable elements. Genet Res 85:171–181

    Article  PubMed  CAS  Google Scholar 

  • Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104:19375–19380

    Article  PubMed  Google Scholar 

  • Le QH, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:7376–7381

    Article  PubMed  CAS  Google Scholar 

  • Lee S-H, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA, Hromas R (2005) The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA 102:18075–18080

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Ji Z, Tian B (2008) Phylogenetic analysis of mRNA polyadenylation sites reveals a role of transposable elements in evolution of the 3'-end of genes. Nucleic Acids Res 36:5581–5590

    Article  PubMed  CAS  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW (2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22:3634–3649

    Article  PubMed  CAS  Google Scholar 

  • Li G, Siddiqui H, Teng Y, Lin R, X-y W, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H (2011a) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13:616–622

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Li C, Xia J, Jin Y (2011b) Domestication of transposable elements into MicroRNA genes in plants. PLoS One 6:e19212

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiol 136:4010–4022

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y (2008a) Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet 4:e1000225

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Teng Y, Park H-J, Ding L, Black C, Fang P, Wang H (2008b) Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome A signal transduction. Plant Physiol 148:981–992

    Article  PubMed  CAS  Google Scholar 

  • Lisch DR (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  PubMed  CAS  Google Scholar 

  • Lisch DR, Bennetzen JL (2011) Transposable element origins of epigenetic gene regulation. Curr Opin Plant Biol 14:156–161

    Article  PubMed  CAS  Google Scholar 

  • Lisch DR, Jiang N (2009) Mutator and MULE transposons. In: Bennetzen JL, Hake S (eds) Handbook of maize. Springer, New York, NY, pp 277–306

    Chapter  Google Scholar 

  • Lisch DR, Freeling M, Langham RJ, Choy MY (2001) Mutator transposase is widespread in the grasses. Plant Physiol 125:1293–1303

    Article  PubMed  CAS  Google Scholar 

  • Lockton S, Gaut BS (2009) The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana. J Mol Evol 68:80–89

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Moriyama EN, Lidholm DA, Hartl DL (1995) Horizontal transmission, vertical inactivation, and stochastic loss of Mariner-like transposable elements. Mol Biol Evol 12:62–72

    Article  PubMed  CAS  Google Scholar 

  • Lowe CB, Bejerano G, Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci USA 104:8005–8010

    Article  PubMed  CAS  Google Scholar 

  • Lunyak VV, Atallah M (2011) Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 89:495–504

    Article  PubMed  CAS  Google Scholar 

  • Magnani E, Sjölander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  PubMed  CAS  Google Scholar 

  • Makałowski W, Mitchell GA, Labuda D (1994) Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet 10:188–193

    Article  PubMed  Google Scholar 

  • Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136:656–668

    Article  PubMed  CAS  Google Scholar 

  • Marino-Ramirez L, Lewis KC, Landsman D, Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110:333–341

    Article  PubMed  CAS  Google Scholar 

  • Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke A, Lindroth AM, Barres R, Yan J, Stromberg S, De S, Ponten F, Lander ES, Carr SA, Zierath JR, Kullander K, Wadelius C, Lindblad-Toh K, Andersson G, Hjalm G, Andersson L (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 7(12):e1000256

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Bendahmane A (2010) A blessing in disguise: transposable elements are more than parasites. Epigenetics 5:378–380

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15:3483–3503

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Miller WJ, Hagemann S, Reiter E, Pinsker W (1992) P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc Natl Acad Sci USA 89:4018–4022

    Article  PubMed  CAS  Google Scholar 

  • Miller WJ, McDonald JF, Pinsker W (1997) Molecular domestication of mobile elements. Genetica 100:261–270

    Article  PubMed  CAS  Google Scholar 

  • Miller WJ, McDonald JF, Nouaud D, Anxolabehere D (1999) Molecular domestication–more than a sporadic episode in evolution. Genetica 107:197–207

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Muehlbauer GJ, Bhau BS, Syed NH, Heinen S, Cho S, Marshall D, Pateyron S, Buisine N, Chalhoub B, Flavell AJ (2006) A hAT superfamily transposase recruited by the cereal grass genome. Mol Genet Genomics 275:553–563

    Article  PubMed  CAS  Google Scholar 

  • Naito K, Zhang F, Tsukiyama T, Saito H, Hancock CN, Richardson AO, Okumoto Y, Tanisaka T, Wessler SR (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Nekrutenko A, Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends Genet 17:619–621

    Article  PubMed  CAS  Google Scholar 

  • Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28:182–190

    Article  PubMed  CAS  Google Scholar 

  • Nouaud D, Anxolabehere D (1997) P element domestication: a stationary truncated P element may encode a 66-kDa repressor-like protein in the Drosophila montium species subgroup. Mol Biol Evol 14:1132–1144

    Article  PubMed  CAS  Google Scholar 

  • Nowick K, Stubbs L (2010) Lineage-specific transcription factors and the evolution of gene regulatory networks. Brief Funct Genomics 9:65–78

    Article  PubMed  CAS  Google Scholar 

  • Obbard DJ, Gordon KHJ, Buck AH, Jiggins FM (2009) The evolution of RNAi as a defence against viruses and transposable elements. Philos Trans R Soc Lond B Biol Sci 364:99–115

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol 23:366–370

    PubMed  CAS  Google Scholar 

  • Okada N, Sasaki T, Shimogori T, Nishihara H (2010) Emergence of mammals by emergency: exaptation. Genes Cells 15:801–812

    PubMed  CAS  Google Scholar 

  • Oki N, Yano K, Okumoto Y, Tsukiyama T, Teraishi M, Tanisaka T (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83:321–329

    Article  PubMed  CAS  Google Scholar 

  • Oliver KR (2011) Mobile DNA and the TE-Thrust hypothesis: supporting evidence from the primates. Mob DNA 2:8

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Ouyang X, Li J, Li G, Li B, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R, Li S, Wang H, Deng XW (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23:2514–2535

    Article  PubMed  CAS  Google Scholar 

  • Pace JK, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432

    Article  PubMed  CAS  Google Scholar 

  • Pardue M-L, DeBaryshe PG (2011) Retrotransposons that maintain chromosome ends. Proc Natl Acad Sci USA 108(51):20317–20324

    Article  PubMed  CAS  Google Scholar 

  • Paricio N, Perez-Alonso M, Martinez-Sebastian MJ, de Frutos R (1991) P sequences of Drosophila subobscura lack exon 3 and may encode a 66 kd repressor-like protein. Nucleic Acids Res 19:6713–6718

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien M-A (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45

    Article  PubMed  CAS  Google Scholar 

  • Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D (2010) Long-range function of an intergenic retrotransposon. PNAS 107:12992–12997

    Article  PubMed  CAS  Google Scholar 

  • Pinsker W, Haring E, Hagemann S, Miller WJ (2001) The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110:148–158

    Article  PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2:e203

    Article  PubMed  CAS  Google Scholar 

  • Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Nellåker C, Meader S (2011) Rapid turnover of functional sequence in human and other genomes. Annu Rev Genomics Hum Genet 12:275–299

    Article  PubMed  CAS  Google Scholar 

  • Pritham EJ (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100:648–655

    Article  PubMed  CAS  Google Scholar 

  • Quesneville H, Nouaud D, Anxolabehere D (2005) Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element. Mol Biol Evol 22:741–746

    Article  PubMed  CAS  Google Scholar 

  • Raizada MN, Benito MI, Walbot V (2001) The MuDR transposon terminal inverted repeat contains a complex plant promoter directing distinct somatic and germinal programs. Plant J 25:79–91

    Article  PubMed  CAS  Google Scholar 

  • Rawn SM, Cross JC (2008) The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol 24:159–181

    Article  PubMed  CAS  Google Scholar 

  • Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7

    Article  PubMed  CAS  Google Scholar 

  • Reiss D, Nouaud D, Ronsseray S, Anxolabéhère D (2005) Domesticated P elements in the Drosophila montium species subgroup have a new function related to a DNA binding property. J Mol Evol 61:470–480

    Article  PubMed  CAS  Google Scholar 

  • Rio DC (1990) Molecular mechanisms regulating Drosophila P element transposition. Annu Rev Genet 24:543–578

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Zumpano KL (1997) Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205:203–217

    Article  PubMed  CAS  Google Scholar 

  • Rose MR, Oakley TH (2007) The new biology: beyond the modern synthesis. Biol Direct 2:30

    Article  PubMed  CAS  Google Scholar 

  • Roussigne M, Kossida S, Lavigne AC, Clouaire T, Ecochard V, Glories A, Amalric F, Girard JP (2003) The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Trends Biochem Sci 28:66–69

    Article  PubMed  CAS  Google Scholar 

  • Rusche LN, Rine J (2010) Switching the mechanism of mating type switching: a domesticated transposase supplants a domesticated homing endonuclease. Genes Dev 24:10–14

    Article  PubMed  Google Scholar 

  • Sabogal A, Lyubimov AY, Corn JE, Berger JM, Rio DC (2010) THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat Struct Mol Biol 17:117–123

    Article  PubMed  CAS  Google Scholar 

  • Saccaro NL Jr, Van Sluys M-A, de Mello VA, Rossi M (2007) MudrA-like sequences from rice and sugarcane cluster as two bona fide transposon clades and two domesticated transposases. Gene 392:117–125

    Article  PubMed  CAS  Google Scholar 

  • Saijo Y, Zhu D, Li J, Rubio V, Zhou Z, Shen Y, Hoecker U, Wang H, Deng XW (2008) Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol Cell 31:607–613

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203

    Article  PubMed  CAS  Google Scholar 

  • Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3:1813–1826

    Article  PubMed  CAS  Google Scholar 

  • Saze H, Kakutani T (2011) Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol 14:81–87

    Article  PubMed  CAS  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  • Schmitz J, Brosius J (2011) Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93:1928–1934

    Article  PubMed  CAS  Google Scholar 

  • Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G (2007) Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu’s unique role in shaping the human transcriptome. Genome Biol 8:R127

    Article  PubMed  CAS  Google Scholar 

  • Sela N, Stern A, Makalowski W, Pupko T, Ast G (2008) Transduplication resulted in the incorporation of two protein-coding sequences into the turmoil-1 transposable element of C. elegans. Biol Direct 3:41

    Article  PubMed  CAS  Google Scholar 

  • Shaheen M, Williamson E, Nickoloff J, Lee S-H, Hromas R (2010) Metnase/SETMAR: a domesticated primate transposase that enhances DNA repair, replication, and decatenation. Genetica 138:559–566

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA (2010) Mobile DNA and evolution in the 21st century. Mob DNA 1:4

    Article  PubMed  CAS  Google Scholar 

  • Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14:148–155

    Article  PubMed  CAS  Google Scholar 

  • Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen RA (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Freeling M, Lisch DR (2005) Heritable transposon silencing initiated by a naturally occurring transposon inverted duplication. Nat Genet 37:641–644

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21:322–326

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Sumiyama K, Amemiya CT (2011) A living fossil in the genome of a living fossil: Harbinger transposons in the coelacanth genome. Mol Biol Evol 29(3):985–993

    Article  PubMed  CAS  Google Scholar 

  • Sorek R (2007) The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–1608

    Article  PubMed  CAS  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43(11):1160–1163

    Article  PubMed  CAS  Google Scholar 

  • Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  • Volff J-N (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28:913–922

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Deng XW (2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Weil CF, Martienssen RA (2008) Epigenetic interactions between transposons and genes: lessons from plants. Curr Opin Genet Dev 18:188–192

    Article  PubMed  CAS  Google Scholar 

  • Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci USA 108(Suppl 2):10863–10870

    Article  PubMed  CAS  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA, Jorde LB (2009) Mobile elements create structural variation: analysis of a complete human genome. Genome Res 19:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Yanovsky MJ, Whitelam GC, Casal JJ (2000) fhy3-1 retains inductive responses of phytochrome A. Plant Physiol 123:235–242

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Wright SI, Bureau TE (2000) Mutator-like elements in Arabidopsis thaliana. Structure, diversity and evolution. Genetics 156:2019–2031

    PubMed  CAS  Google Scholar 

  • Zaratiegui M, Vaughn MW, Irvine DV, Goto D, Watt S, Bähler J, Arcangioli B, Martienssen RA (2011) CENP-B preserves genome integrity at replication forks paused by retrotransposon LTR. Nature 469:112–115

    Article  PubMed  CAS  Google Scholar 

  • Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Birchler J, Peterson T (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23:755–765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Thomas Eickbush for his comments. This work was supported by funds from the Natural Sciences and Engineering Research Council of Canada (NSERC), Genome Québec, and Genome Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Hoen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoen, D.R., Bureau, T.E. (2012). Transposable Element Exaptation in Plants. In: Grandbastien, MA., Casacuberta, J. (eds) Plant Transposable Elements. Topics in Current Genetics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31842-9_12

Download citation

Publish with us

Policies and ethics