Skip to main content

Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing

  • Chapter
  • First Online:
RNA and Cancer

Abstract

For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5′ splice site and the U2AF65/U2AF35 complex to the 3′ splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186–93, 2002, Cartegni et al., Nat Rev Genet 3(4):285–98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389–96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584–94, 2004, Venables, Bioessays 28(4):378–86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635–2641, 2006, Revil et al., Bull Cancer 93(9):909–919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349–57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432–1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18(4):186–193

    PubMed  CAS  Google Scholar 

  2. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3(4):285–298

    PubMed  CAS  Google Scholar 

  3. Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5(5):389–396

    PubMed  CAS  Google Scholar 

  4. Brinkman BM (2004) Splice variants as cancer biomarkers. Clin Biochem 37(7):584–594

    PubMed  CAS  Google Scholar 

  5. Venables JP (2006) Unbalanced alternative splicing and its significance in cancer. BioEssays 28(4):378–386

    PubMed  CAS  Google Scholar 

  6. Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119(Pt 13):2635–2641

    PubMed  CAS  Google Scholar 

  7. Revil T, Shkreta L, Chabot B (2006) Pre-mRNA alternative splicing in cancer: functional impact, molecular mechanisms and therapeutic perspectives. Bull Cancer 93(9):909–919

    PubMed  CAS  Google Scholar 

  8. Venables JP (ed) (2006) Alternative splicing in cancer. Transworld Res Network

    Google Scholar 

  9. Pajares MJ, Ezponda T, Catena R, Calvo A, Pio R, Montuenga LM (2007) Alternative splicing: an emerging topic in molecular and clinical oncology. Lancet Oncol 8(4):349–357

    PubMed  CAS  Google Scholar 

  10. Skotheim RI, Nees M (2007) Alternative splicing in cancer: noise, functional, or systematic? Int J Biochem Cell Biol 39(7–8):1432–1449

    PubMed  CAS  Google Scholar 

  11. Forch P, Valcarcel J (2003) Splicing regulation in Drosophila sex determination. Prog Mol Subcell Biol 31:127–151

    PubMed  CAS  Google Scholar 

  12. Peterson ML (1994) Regulated immunoglobulin (Ig) RNA processing does not require specific cis-acting sequences: non-Ig RNA can be alternatively processed in B cells and plasma cells. Mol Cell Biol 14(12):7891–7898

    PubMed  CAS  Google Scholar 

  13. Lou H, Gagel RF (1998) Alternative RNA processing–its role in regulating expression of calcitonin/calcitonin gene-related peptide. J Endocrinol 156(3):401–405

    PubMed  CAS  Google Scholar 

  14. Black DL (1998) Splicing in the inner ear: a familiar tune, but what are the instruments? Neuron 20(2):165–168

    PubMed  CAS  Google Scholar 

  15. Pan Q, Saltzman AL, Kim YK et al (2006) Quantitative microarray profiling provides evidence against widespread coupling of alternative splicing with nonsense-mediated mRNA decay to control gene expression. Genes Dev 20(2):153–158

    PubMed  CAS  Google Scholar 

  16. Wollerton MC, Gooding C, Wagner EJ, Garcia-Blanco MA, Smith CW (2004) Autoregulation of polypyrimidine tract binding protein by alternative splicing leading to nonsense-mediated decay. Mol Cell 13(1):91–100

    PubMed  CAS  Google Scholar 

  17. Ni JZ, Grate L, Donohue JP et al (2007) Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev 21(6):708–718

    PubMed  CAS  Google Scholar 

  18. Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J (2001) SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 20(7):1785–1796

    PubMed  CAS  Google Scholar 

  19. Lareau LF, Inada M, Green RE, Wengrod JC, Brenner SE (2007) Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446(7138):926–929

    PubMed  CAS  Google Scholar 

  20. Tress ML, Martelli PL, Frankish A et al (2007) The implications of alternative splicing in the ENCODE protein complement. Proc Natl Acad Sci U S A 104(13):5495–5500

    PubMed  CAS  Google Scholar 

  21. Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA (1997) Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15(25):3059–3065

    PubMed  CAS  Google Scholar 

  22. Moffa AB, Ethier SP (2007) Differential signal transduction of alternatively spliced FGFR2 variants expressed in human mammary epithelial cells. J Cell Physiol 210(3):720–731

    PubMed  CAS  Google Scholar 

  23. Oltean S, Sorg BS, Albrecht T et al (2006) Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci U S A 103(38):14116–14121

    PubMed  CAS  Google Scholar 

  24. Bourdon JC, Fernandes K, Murray-Zmijewski F et al (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137

    PubMed  CAS  Google Scholar 

  25. Ozaki T, Nakagawara A (2005) p73, a sophisticated p53 family member in the cancer world. Cancer Sci 96(11):729–737

    PubMed  CAS  Google Scholar 

  26. Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2(1):9–15

    PubMed  CAS  Google Scholar 

  27. Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW (2003) Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 63(18):5703–5706

    PubMed  CAS  Google Scholar 

  28. Lovecchio M, Maiorano E, Vacca RA et al (2003) beta 1C integrin expression in human endometrial proliferative diseases. Am J Pathol 163(6):2543–2553

    PubMed  CAS  Google Scholar 

  29. Hsieh HF, Yu JC, Ho LI, Chiu SC, Harn HJ (1999) Molecular studies into the role of CD44 variants in metastasis in gastric cancer. Mol Pathol 52(1):25–28

    PubMed  CAS  Google Scholar 

  30. Wallach SB, Friedmann A, Naor D (2000) The CD44 receptor of the mouse LB T-cell lymphoma: analysis of the isoform repertoire and ligand binding properties by reverse-transcriptase polymerase chain reaction and antisense oligonucleotides. Cancer Detect Prev 24(1):33–45

    PubMed  CAS  Google Scholar 

  31. Miyake H, Eto H, Arakawa S, Kamidono S, Hara I (2002) Over expression of CD44V8-10 in urinary exfoliated cells as an independent prognostic predictor in patients with urothelial cancer. J Urol 167(3):1282–1287

    PubMed  Google Scholar 

  32. Hashimoto-Uoshima M, Yan YZ, Schneider G, Aukhil I (1997) The alternatively spliced domains EIIIB and EIIIA of human fibronectin affect cell adhesion and spreading. J Cell Sci 110(Pt 18):2271–2280

    PubMed  CAS  Google Scholar 

  33. Ghigna C, Giordano S, Shen H et al (2005) Cell motility is controlled by SF2/ASF through alternative splicing of the ron protooncogene. Mol Cell 20(6):881–890

    PubMed  CAS  Google Scholar 

  34. Ladomery MR, Harper SJ, Bates DO (2007) Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett 249(2):133–142

    PubMed  CAS  Google Scholar 

  35. Catena R, Muniz-Medina V, Moralejo B et al (2007) Increased expression of VEGF(121)/VEGF(165–189) ratio results in a significant enhancement of human prostate tumor angiogenesis. Int J Cancer 120(10):2096–2109

    PubMed  CAS  Google Scholar 

  36. Cohen CD, Doran PP, Blattner SM et al (2005) Sam68-like mammalian protein 2, identified by digital differential display as expressed by podocytes, is induced in proteinuria and involved in splice site selection of vascular endothelial growth factor. J Am Soc Nephrol 16(7):1958–1965

    PubMed  CAS  Google Scholar 

  37. Chao C, Goluszko E, Lee YT et al (2007) Constitutively active CCK2 receptor splice variant increases src-dependent HIF-1 alpha expression and tumor growth. Oncogene 26(7):1013–1019

    PubMed  CAS  Google Scholar 

  38. Koduri S, Goldhar AS, Vonderhaar BK (2006) Activation of vascular endothelial growth factor (VEGF) by the ER-alpha variant, ERDelta3. Breast Cancer Res Treat 95(1):37–43

    PubMed  CAS  Google Scholar 

  39. Caldas H, Fangusaro JR, Boue DR, Holloway MP, Altura RA (2007) Dissecting the role of endothelial SURVIVIN deltaEx3 in angiogenesis. Blood 109(4):1479–1489

    PubMed  CAS  Google Scholar 

  40. Schwerk C, Schulze-Osthoff K (2005) Regulation of apoptosis by alternative pre-mRNA splicing. Mol Cell 19(1):1–13

    PubMed  CAS  Google Scholar 

  41. Minn AJ, Boise LH, Thompson CB (1996) Bcl-x(S) anatagonizes the protective effects of Bcl-x(L). J Biol Chem 271(11):6306–6312

    PubMed  CAS  Google Scholar 

  42. Tu Y, Renner S, Xu F et al (1998) BCL-X expression in multiple myeloma: possible indicator of chemoresistance. Cancer Res 58(2):256–262

    PubMed  CAS  Google Scholar 

  43. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H (2001) Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 34(1):55–61

    PubMed  CAS  Google Scholar 

  44. Olopade OI, Adeyanju MO, Safa AR et al (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer J Sci Am 3(4):230–237

    PubMed  CAS  Google Scholar 

  45. Yang CC, Lin HP, Chen CS, Yang YT, Tseng PH, Rangnekar VM (2003) Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells. J Biol Chem 278(28):25872–25878

    PubMed  CAS  Google Scholar 

  46. Wincewicz A, Sulkowska M, Koda M, Kanczuga-Koda L, Witkowska E, Sulkowski S (2007) Significant coexpression of GLUT-1, Bcl-xL, and bax in colorectal cancer. Ann N Y Acad Sci 1095:53–61

    PubMed  CAS  Google Scholar 

  47. Chang BS, Kelekar A, Harris MH, Harlan JE, Fesik SW, Thompson CB (1999) The BH3 domain of Bcl-x(S) is required for inhibition of the antiapoptotic function of Bcl-x(L). Mol Cell Biol 19(10):6673–6681

    PubMed  CAS  Google Scholar 

  48. Dole MG, Jasty R, Cooper MJ, Thompson CB, Nunez G, Castle VP (1995) Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55(12):2576–2582

    PubMed  CAS  Google Scholar 

  49. Simonian PL, Grillot DA, Nunez G (1997) Bcl-2 and Bcl-XL can differentially block chemotherapy-induced cell death. Blood 90(3):1208–1216

    PubMed  CAS  Google Scholar 

  50. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA (2000) Bcl-xL in prostate cancer cells: effects of overexpression and down-regulation on chemosensitivity. Cancer Res 60(21):6052–6060

    PubMed  CAS  Google Scholar 

  51. Williams J, Lucas PC, Griffith KA et al (2005) Expression of Bcl-xL in ovarian carcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol 96(2):287–295

    PubMed  CAS  Google Scholar 

  52. Cho HJ, Kim JK, Kim KD et al (2006) Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of bax translocation in human bladder cancer cells. Cancer Lett 237(1):56–66

    PubMed  CAS  Google Scholar 

  53. Vilenchik M, Raffo AJ, Benimetskaya L, Shames D, Stein CA (2002) Antisense RNA down-regulation of bcl-xL expression in prostate cancer cells leads to diminished rates of cellular proliferation and resistance to cytotoxic chemotherapeutic agents. Cancer Res 62(7):2175–2183

    PubMed  CAS  Google Scholar 

  54. Zhu H, Guo W, Zhang L et al (2005) Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells. Mol Cancer Ther 4(3):451–456

    PubMed  CAS  Google Scholar 

  55. Konishi T, Sasaki S, Watanabe T, Kitayama J, Nagawa H (2006) Overexpression of hRFI inhibits 5-fluorouracil-induced apoptosis in colorectal cancer cells via activation of NF-kappaB and upregulation of BCL-2 and BCL-XL. Oncogene 25(22):3160–3169

    PubMed  CAS  Google Scholar 

  56. Wang P, Song JH, Song DK, Zhang J, Hao C (2006) Role of death receptor and mitochondrial pathways in conventional chemotherapy drug induction of apoptosis. Cell Signal 18(9):1528–1535

    PubMed  CAS  Google Scholar 

  57. Matsushita K, Tomonaga T, Shimada H et al (2006) An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis. Cancer Res 66(3):1409–1417

    PubMed  CAS  Google Scholar 

  58. Patel NA, Song SS, Cooper DR (2006) PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 13(2):73–84

    PubMed  CAS  Google Scholar 

  59. He X, Ee PL, Coon JS, Beck WT (2004) Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res 10(14):4652–4660

    PubMed  CAS  Google Scholar 

  60. Lamba JK, Adachi M, Sun D et al (2003) Nonsense mediated decay downregulates conserved alternatively spliced ABCC4 transcripts bearing nonsense codons. Hum Mol Genet 12(2):99–109

    PubMed  CAS  Google Scholar 

  61. Chen KG, Szakacs G, Annereau JP et al (2005) Principal expression of two mRNA isoforms (ABCB 5alpha and ABCB 5beta) of the ATP-binding cassette transporter gene ABCB 5 in melanoma cells and melanocytes. Pigment Cell Res 18(2):102–112

    PubMed  CAS  Google Scholar 

  62. Devine SE, Hussain A, Davide JP, Melera PW (1991) Full length and alternatively spliced pgp1 transcripts in multidrug-resistant chinese hamster lung cells. J Biol Chem 266(7):4545–4555

    PubMed  CAS  Google Scholar 

  63. Ma JF, Grant G, Staelens B, Howard DL, Melera PW (1999) In vitro translation of a 2.3-kb splicing variant of the hamster pgp1 gene whose presence in transfectants is associated with decreased drug resistance. Cancer Chemother Pharmacol 43(1):19–28

    PubMed  CAS  Google Scholar 

  64. Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108(2):678–684

    PubMed  CAS  Google Scholar 

  65. Muller M, Schleithoff ES, Stremmel W, Melino G, Krammer PH, Schilling T (2006) One, two, three-p53, p63, p73 and chemosensitivity. Drug Resist Updat 9(6):288–306

    PubMed  Google Scholar 

  66. Yin F, Du Y, Hu W et al (2006) Mad2beta, an alternative variant of Mad2 reducing mitotic arrest and apoptosis induced by adriamycin in gastric cancer cells. Life Sci 78(12):1277–1286

    PubMed  CAS  Google Scholar 

  67. Efimova EV, Al-Zoubi AM, Martinez O et al (2004) IG20, in contrast to DENN-SV, (MADD splice variants) suppresses tumor cell survival, and enhances their susceptibility to apoptosis and cancer drugs. Oncogene 23(5):1076–1087

    PubMed  CAS  Google Scholar 

  68. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    PubMed  CAS  Google Scholar 

  69. Blanchette M, Chabot B (1997) A highly stable duplex structure sequesters the 5′ splice site region of hnRNP A1 alternative exon 7B. RNA 3(4):405–419

    PubMed  CAS  Google Scholar 

  70. Blanchette M, Chabot B (1999) Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization. EMBO J 18(7):1939–1952

    PubMed  CAS  Google Scholar 

  71. Nasim FU, Hutchison S, Cordeau M, Chabot B (2002) High-affinity hnRNP A1 binding sites and duplex-forming inverted repeats have similar effects on 5′ splice site selection in support of a common looping out and repression mechanism. RNA 8(8):1078–1089

    PubMed  CAS  Google Scholar 

  72. Martinez-Contreras R, Fisette JF, Nasim FU, Madden R, Cordeau M, Chabot B (2006) Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 4(2):e21

    PubMed  Google Scholar 

  73. Wagner EJ, Garcia-Blanco MA (2001) Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 21(10):3281–3288

    PubMed  CAS  Google Scholar 

  74. Amir-Ahmady B, Boutz PL, Markovtsov V, Phillips ML, Black DL (2005) Exon repression by polypyrimidine tract binding protein. RNA 11(5):699–716

    PubMed  CAS  Google Scholar 

  75. Ule J, Stefani G, Mele A et al (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444(7119):580–586

    PubMed  CAS  Google Scholar 

  76. Domsic JK, Wang Y, Mayeda A, Krainer AR, Stoltzfus CM (2003) Human immunodeficiency virus type 1 hnRNP A/B-dependent exonic splicing silencer ESSV antagonizes binding of U2AF65 to viral polypyrimidine tracts. Mol Cell Biol 23(23):8762–8772

    PubMed  CAS  Google Scholar 

  77. Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol Cell 8(6):1351–1361

    PubMed  CAS  Google Scholar 

  78. Soret J, Gabut M, Tazi J (2006) SR proteins as potential targets for therapy. Prog Mol Subcell Biol 44:65–87

    PubMed  CAS  Google Scholar 

  79. Krawczak M, Reiss J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90(1–2):41–54

    PubMed  CAS  Google Scholar 

  80. Lopez-Bigas N, Blencowe BJ, Ouzounis CA (2006) Highly consistent patterns for inherited human diseases at the molecular level. Bioinformatics 22(3):269–277

    PubMed  CAS  Google Scholar 

  81. Disset A, Bourgeois CF, Benmalek N, Claustres M, Stevenin J, Tuffery-Giraud S (2006) An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements. Hum Mol Genet 15(6):999–1013

    PubMed  CAS  Google Scholar 

  82. Serra E, Ars E, Ravella A et al (2001) Somatic NF1 mutational spectrum in benign neurofibromas: mRNA splice defects are common among point mutations. Hum Genet 108(5):416–429

    PubMed  CAS  Google Scholar 

  83. Baser ME, Kuramoto L, Woods R et al (2005) The location of constitutional neurofibromatosis 2 (NF2) splice site mutations is associated with the severity of NF2. J Med Genet 42(7):540–546

    PubMed  CAS  Google Scholar 

  84. Holmila R, Fouquet C, Cadranel J, Zalcman G, Soussi T (2003) Splice mutations in the p53 gene: case report and review of the literature. Hum Mutat 21(1):101–102

    PubMed  CAS  Google Scholar 

  85. Neklason DW, Solomon CH, Dalton AL, Kuwada SK, Burt RW (2004) Intron 4 mutation in APC gene results in splice defect and attenuated FAP phenotype. Fam Cancer 3(1):35–40

    PubMed  CAS  Google Scholar 

  86. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27(1):55–58

    PubMed  CAS  Google Scholar 

  87. Yang Y, Swaminathan S, Martin BK, Sharan SK (2003) Aberrant splicing induced by missense mutations in BRCA1: clues from a humanized mouse model. Hum Mol Genet 12(17):2121–2131

    PubMed  CAS  Google Scholar 

  88. Narla G, DiFeo A, Yao S et al (2005) Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res 65(13):5761–5768

    PubMed  CAS  Google Scholar 

  89. Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST (2005) Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 11(2 Pt 1):483–489

    PubMed  CAS  Google Scholar 

  90. Venesio T, Balsamo A, Sfiligoi C et al (2007) Constitutional high expression of an APC mRNA isoform in a subset of attenuated familial adenomatous polyposis patients. J Mol Med 85(3):301–308

    Google Scholar 

  91. Zhuo D, Madden R, Elela SA, Chabot B (2007) Modern origin of numerous alternatively spliced human introns from tandem arrays. Proc Natl Acad Sci U S A 104(3):882–886

    PubMed  CAS  Google Scholar 

  92. Hallier M, Lerga A, Barnache S, Tavitian A, Moreau-Gachelin F (1998) The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J Biol Chem 273(9):4838–4842

    PubMed  CAS  Google Scholar 

  93. Knoop LL, Baker SJ (2000) The splicing factor U1C represses EWS/FLI-mediated transactivation. J Biol Chem 275(32):24865–24871

    PubMed  CAS  Google Scholar 

  94. Yang L, Embree LJ, Hickstein DD (2000) TLS-ERG leukemia fusion protein inhibits RNA splicing mediated by serine-arginine proteins. Mol Cell Biol 20(10):3345–3354

    PubMed  CAS  Google Scholar 

  95. Chansky HA, Hu M, Hickstein DD, Yang L (2001) Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res 61(9):3586–3590

    PubMed  CAS  Google Scholar 

  96. Janknecht R (2005) EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene 363:1–14

    PubMed  CAS  Google Scholar 

  97. Knoop LL, Baker SJ (2001) EWS/FLI alters 5′-splice site selection. J Biol Chem 276(25):22317–22322

    PubMed  CAS  Google Scholar 

  98. Yang L, Chansky HA, Hickstein DD (2000) EWS. Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing. J Biol Chem 275(48):37612–37618

    PubMed  CAS  Google Scholar 

  99. Ohkura N, Yaguchi H, Tsukada T, Yamaguchi K (2002) The EWS/NOR1 fusion gene product gains a novel activity affecting pre-mRNA splicing. J Biol Chem 277(1):535–543

    PubMed  CAS  Google Scholar 

  100. Salesse S, Dylla SJ, Verfaillie CM (2004) p210BCR/ABL-induced alteration of pre-mRNA splicing in primary human CD34 + hematopoietic progenitor cells. Leukemia 18(4):727–733

    PubMed  CAS  Google Scholar 

  101. Chabot B, Frappier D, La Branche H (1992) Differential ASF/SF2 activity in extracts from normal WI38 and transformed WI38VA13 cells. Nucleic Acids Res 20(19):5197–5204

    PubMed  CAS  Google Scholar 

  102. Lavigueur A, La Branche H, Kornblihtt AR, Chabot B (1993) A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7((12A)):2405–2417

    PubMed  CAS  Google Scholar 

  103. Ghigna C, Moroni M, Porta C, Riva S, Biamonti G (1998) Altered expression of heterogenous nuclear ribonucleoproteins and SR factors in human colon adenocarcinomas. Cancer Res 58(24):5818–5824

    PubMed  CAS  Google Scholar 

  104. Pino I, Pio R, Toledo G et al (2003) Altered patterns of expression of members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family in lung cancer. Lung Cancer 41(2):131–143

    PubMed  Google Scholar 

  105. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR (2007) The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 14(3):185–193

    PubMed  CAS  Google Scholar 

  106. Li X, Wang J, Manley JL (2005) Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis, but inhibits internucleosomal DNA fragmentation. Genes Dev 19(22):2705–2714

    PubMed  CAS  Google Scholar 

  107. Chalfant CE, Ogretmen B, Galadari S, Kroesen BJ, Pettus BJ, Hannun YA (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J Biol Chem 276(48):44848–44855

    PubMed  CAS  Google Scholar 

  108. He X, Pool M, Darcy KM et al (2007) Knockdown of polypyrimidine tract-binding protein suppresses ovarian tumor cell growth and invasiveness in vitro. Oncogene 26(34):4961–4968

    PubMed  CAS  Google Scholar 

  109. Perry WL 3rd, Shepard RL, Sampath J et al (2005) Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed–a phenotype partially reversed by selective estrogen receptor modulators. Cancer Res 65(15):6593–6600

    PubMed  CAS  Google Scholar 

  110. Shitashige M, Naishiro Y, Idogawa M et al (2007) Involvement of splicing factor-1 in beta-catenin/T-cell factor-4-mediated gene transactivation and pre-mRNA splicing. Gastroenterology 132(3):1039–1054

    PubMed  CAS  Google Scholar 

  111. Ding WQ, Kuntz SM, Miller LJ (2002) A misspliced form of the cholecystokinin-B/gastrin receptor in pancreatic carcinoma: role of reduced sellular U2AF35 and a suboptimal 3′-splicing site leading to retention of the fourth intron. Cancer Res 62(3):947–952

    PubMed  CAS  Google Scholar 

  112. Sergeant KA, Bourgeois CF, Dalgliesh C, Venables JP, Stevenin J, Elliott DJ (2007) Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2. J Cell Sci 120(Pt 2):309–319

    PubMed  CAS  Google Scholar 

  113. Le Guiner C, Plet A, Galiana D, Gesnel MC, Del Gatto-Konczak F, Breathnach R (2001) Polypyrimidine tract-binding protein represses splicing of a fibroblast growth factor receptor-2 gene alternative exon through exon sequences. J Biol Chem 276(47):43677–43687

    PubMed  Google Scholar 

  114. Baraniak AP, Chen JR, Garcia-Blanco MA (2006) Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Mol Cell Biol 26(4):1209–1222

    PubMed  CAS  Google Scholar 

  115. Jin W, McCutcheon IE, Fuller GN, Huang ES, Cote GJ (2000) Fibroblast growth factor receptor-1 alpha-exon exclusion and polypyrimidine tract-binding protein in glioblastoma multiforme tumors. Cancer Res 60(5):1221–1224

    PubMed  CAS  Google Scholar 

  116. Stickeler E, Kittrell F, Medina D, Berget SM (1999) Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis. Oncogene 18(24):3574–3582

    PubMed  CAS  Google Scholar 

  117. Fischer DC, Noack K, Runnebaum IB et al (2004) Expression of splicing factors in human ovarian cancer. Oncol Rep 11(5):1085–1090

    PubMed  CAS  Google Scholar 

  118. Galiana-Arnoux D, Lejeune F, Gesnel MC, Stevenin J, Breathnach R, Del Gatto-Konczak F (2003) The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20. J Biol Chem 278(35):32943–32953

    PubMed  CAS  Google Scholar 

  119. Matter N, Herrlich P, Konig H (2002) Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420(6916):691–695

    PubMed  CAS  Google Scholar 

  120. Matter N, Marx M, Weg-Remers S, Ponta H, Herrlich P, Konig H (2000) Heterogeneous ribonucleoprotein A1 is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem 275(45):35353–35360

    PubMed  CAS  Google Scholar 

  121. Venables JP, Dalgliesh C, Paronetto MP et al (2004) SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet 13(14):1525–1534

    PubMed  CAS  Google Scholar 

  122. Cheng C, Sharp PA (2006) Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 26(1):362–370

    PubMed  CAS  Google Scholar 

  123. Watermann DO, Tang Y, Zur Hausen A, Jager M, Stamm S, Stickeler E (2006) Splicing factor Tra2-beta1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Res 66(9):4774–4780

    PubMed  CAS  Google Scholar 

  124. Batsche E, Yaniv M, Muchardt C (2006) The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 13(1):22–29

    PubMed  CAS  Google Scholar 

  125. Zhou YQ, He C, Chen YQ, Wang D, Wang MH (2003) Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential. Oncogene 22(2):186–197

    PubMed  CAS  Google Scholar 

  126. Forch P, Puig O, Martinez C, Seraphin B, Valcarcel J (2002) The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J 21(24):6882–6892

    PubMed  Google Scholar 

  127. Izquierdo JM, Majos N, Bonnal S et al (2005) Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol Cell 19(4):475–484

    PubMed  CAS  Google Scholar 

  128. Li CY, Chu JY, Yu JK et al (2004) Regulation of alternative splicing of Bcl-x by IL-6 GM-CSF and TPA. Cell Res 14(6):473–479

    PubMed  CAS  Google Scholar 

  129. Massiello A, Salas A, Pinkerman RL, Roddy P, Roesser JR, Chalfant CE (2004) Identification of two RNA cis-elements that function to regulate the 5′ splice site selection of Bcl-x pre-mRNA in response to ceramide. J Biol Chem 279(16):15799–15804

    PubMed  CAS  Google Scholar 

  130. Paronetto MP, Achsel T, Massiello A, Chalfant CE, Sette C (2007) The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol 176(7):929–939

    PubMed  CAS  Google Scholar 

  131. Garneau D, Revil T, Fisette JF, Chabot B (2005) Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 280(24):22641–22650

    PubMed  CAS  Google Scholar 

  132. Cloutier P, Toutant J, Shkreta L, Goekjian S, Revil T, Chabot B (2008) Antagonistic effects of the SRp30c protein and cryptic 5′ splice sites on the alternative splicing of the apoptotic regulator Bcl-x. J Biol Chem 283(31):21315–21324

    PubMed  CAS  Google Scholar 

  133. Revil T, Toutant J, Shkreta L, Garneau D, Cloutier P, Chabot B (2007) Protein kinase C-dependent control of Bcl-x alternative splicing. Mol Cell Biol 27(24):8431–8441

    PubMed  CAS  Google Scholar 

  134. Shkreta L, Froehlich U, Paquet ER, Toutant J, Elela SA, Chabot B (2008) Anticancer drugs affect the alternative splicing of Bcl-x and other human apoptotic genes. Mol Cancer Ther 7(6):1398–1409

    PubMed  CAS  Google Scholar 

  135. Wu JY, Tang H, Havlioglu N (2003) Alternative pre-mRNA splicing and regulation of programmed cell death. Prog Mol Subcell Biol 31:153–185

    PubMed  CAS  Google Scholar 

  136. Jiang ZH, Zhang WJ, Rao Y, Wu JY (1998) Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc Natl Acad Sci U S A 95(16):9155–9160

    PubMed  CAS  Google Scholar 

  137. Cote J, Dupuis S, Jiang Z, Wu JY (2001) Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3′ acceptor site. Proc Natl Acad Sci U S A 98(3):938–943

    PubMed  CAS  Google Scholar 

  138. Faustino NA, Cooper TA (2003) Pre-mRNA splicing and human disease. Genes Dev 17(4):419–437

    PubMed  CAS  Google Scholar 

  139. Ho TH, Charlet BN, Poulos MG, Singh G, Swanson MS, Cooper TA (2004) Muscleblind proteins regulate alternative splicing. EMBO J 23(15):3103–3112

    PubMed  CAS  Google Scholar 

  140. Auboeuf D, Batsche E, Dutertre M, Muchardt C, O’Malley BW (2007) Coregulators: transducing signal from transcription to alternative splicing. Trends Endocrinol Metab 18(3):122–129

    PubMed  CAS  Google Scholar 

  141. Kornblihtt AR (2005) Promoter usage and alternative splicing. Curr Opin Cell Biol 17(3):262–268

    PubMed  CAS  Google Scholar 

  142. Cramer P, Pesce CG, Baralle FE, Kornblihtt AR (1997) Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 94(21):11456–11460

    PubMed  CAS  Google Scholar 

  143. Gendra E, Colgan DF, Meany B, Konarska MM (2007) A sequence motif in the SV40 early core promoter affects alternative splicing of transcribed mRNA. J Biol Chem 282(16):11648–11657

    PubMed  CAS  Google Scholar 

  144. Auboeuf D, Dowhan DH, Li X et al (2004) CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol 24(1):442–453

    PubMed  CAS  Google Scholar 

  145. Guillouf C, Gallais I, Moreau-Gachelin F (2006) Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding-dependent manner. J Biol Chem 281(28):19145–19155

    PubMed  CAS  Google Scholar 

  146. de la Mata M, Kornblihtt AR (2006) RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat Struct Mol Biol 13(11):973–980

    PubMed  Google Scholar 

  147. de la Mata M, Alonso CR, Kadener S et al (2003) A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12(2):525–532

    PubMed  Google Scholar 

  148. Nogues G, Kadener S, Cramer P et al (2003) Control of alternative pre-mRNA splicing by RNA Pol II elongation: faster is not always better. IUBMB Life 55(4–5):235–241

    PubMed  CAS  Google Scholar 

  149. Pecci A, Viegas LR, Baranao JL, Beato M (2001) Promoter choice influences alternative splicing and determines the balance of isoforms expressed from the mouse bcl-X gene. J Biol Chem 276(24):21062–21069

    PubMed  CAS  Google Scholar 

  150. Logette E, Wotawa A, Solier S, Desoche L, Solary E, Corcos L (2003) The human caspase-2 gene: alternative promoters, pre-mRNA splicing and AUG usage direct isoform-specific expression. Oncogene 22(6):935–946

    PubMed  CAS  Google Scholar 

  151. Landry JR, Mager DL, Wilhelm BT (2003) Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet 19(11):640–648

    PubMed  CAS  Google Scholar 

  152. Kimura K, Wakamatsu A, Suzuki Y et al (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res 16(1):55–65

    PubMed  CAS  Google Scholar 

  153. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    PubMed  CAS  Google Scholar 

  154. Beghini A, Ripamonti CB, Peterlongo P et al (2000) RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 9(15):2297–2304

    PubMed  CAS  Google Scholar 

  155. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98(25):14687–14692

    PubMed  CAS  Google Scholar 

  156. Weischenfeldt J, Lykke-Andersen J, Porse B (2005) Messenger RNA surveillance: neutralizing natural nonsense. Curr Biol 15(14):R559–R562

    PubMed  CAS  Google Scholar 

  157. Rossi MR, Hawthorn L, Platt J, Burkhardt T, Cowell JK, Ionov Y (2005) Identification of inactivating mutations in the JAK1, SYNJ2, and CLPTM1 genes in prostate cancer cells using inhibition of nonsense-mediated decay and microarray analysis. Cancer Genet Cytogenet 161(2):97–103

    PubMed  CAS  Google Scholar 

  158. Ware MD, DeSilva D, Sinilnikova OM, Stoppa-Lyonnet D, Tavtigian SV, Mazoyer S (2006) Does nonsense-mediated mRNA decay explain the ovarian cancer cluster region of the BRCA2 gene? Oncogene 25(2):323–328

    PubMed  CAS  Google Scholar 

  159. Green RE, Lewis BP, Hillman RT et al (2003) Widespread predicted nonsense-mediated mRNA decay of alternatively-spliced transcripts of human normal and disease genes. Bioinformatics 19(Suppl 1):i118–i121

    PubMed  Google Scholar 

  160. El-Bchiri J, Buhard O, Penard-Lacronique V, Thomas G, Hamelin R, Duval A (2005) Differential nonsense mediated decay of mutated mRNAs in mismatch repair deficient colorectal cancers. Hum Mol Genet 14(16):2435–2442

    PubMed  CAS  Google Scholar 

  161. De Rosa M, Morelli G, Cesaro E et al (2007) Alternative splicing and nonsense-mediated mRNA decay in the regulation of a new adenomatous polyposis coli transcript. Gene 395(1–2):8–14

    PubMed  Google Scholar 

  162. Tarn WY (2007) Cellular signals modulate alternative splicing. J Biomed Sci 14(4):517–522

    PubMed  CAS  Google Scholar 

  163. Blaustein M, Pelisch F, Srebrow A (2007) Signals, pathways and splicing regulation. Int J Biochem Cell Biol 39(11):2031–2048

    PubMed  CAS  Google Scholar 

  164. Ding JH, Zhong XY, Hagopian JC et al (2006) Regulated cellular partitioning of SR protein-specific kinases in mammalian cells. Mol Biol Cell 17(2):876–885

    PubMed  CAS  Google Scholar 

  165. Xie J, Lee JA, Kress TL, Mowry KL, Black DL (2003) Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci U S A 100(15):8776–8781

    PubMed  CAS  Google Scholar 

  166. Allemand E, Guil S, Myers M, Moscat J, Caceres JF, Krainer AR (2005) Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proc Natl Acad Sci U S A 102(10):3605–3610

    PubMed  CAS  Google Scholar 

  167. Hall MP, Huang S, Black DL (2004) Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell 15(2):774–786

    PubMed  CAS  Google Scholar 

  168. Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2(10):760–768

    PubMed  CAS  Google Scholar 

  169. Blaustein M, Pelisch F, Coso OA, Bissell MJ, Kornblihtt AR, Srebrow A (2004) Mammary epithelial-mesenchymal interaction regulates fibronectin alternative splicing via phosphatidylinositol 3-kinase. J Biol Chem 279(20):21029–21037

    PubMed  CAS  Google Scholar 

  170. Patel NA, Kaneko S, Apostolatos HS et al (2005) Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 280(14):14302–14309

    PubMed  CAS  Google Scholar 

  171. Konig H, Ponta H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 17(10):2904–2913

    PubMed  CAS  Google Scholar 

  172. Cheng C, Yaffe MB, Sharp PA (2006) A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes Dev 20(13):1715–1720

    PubMed  CAS  Google Scholar 

  173. Hayes GM, Carrigan PE, Beck AM, Miller LJ (2006) Targeting the RNA splicing machinery as a novel treatment strategy for pancreatic carcinoma. Cancer Res 66(7):3819–3827

    PubMed  CAS  Google Scholar 

  174. Hayes GM, Carrigan PE, Miller LJ (2007) Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res 67(5):2072–2080

    PubMed  CAS  Google Scholar 

  175. Bellavia D, Mecarozzi M, Campese AF et al (2007) Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 26(6):1670–1680

    PubMed  CAS  Google Scholar 

  176. Shin C, Manley JL (2004) Cell signalling and the control of pre-mRNA splicing. Nat Rev Mol Cell Biol 5(9):727–738

    PubMed  CAS  Google Scholar 

  177. Blaustein M, Pelisch F, Tanos T et al (2005) Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol 12(12):1037–1044

    PubMed  CAS  Google Scholar 

  178. Chen HH, Wang YC, Fann MJ (2006) Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol Cell Biol 26(7):2736–2745

    PubMed  CAS  Google Scholar 

  179. Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS (1998) Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12(5):679–691

    PubMed  CAS  Google Scholar 

  180. Yu MC, Bachand F, McBride AE, Komili S, Casolari JM, Silver PA (2004) Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes Dev 18(16):2024–2035

    PubMed  CAS  Google Scholar 

  181. Ohkura N, Takahashi M, Yaguchi H, Nagamura Y, Tsukada T (2005) Coactivator-associated arginine methyltransferase 1, CARM1, affects pre-mRNA splicing in an isoform-specific manner. J Biol Chem 280(32):28927–28935

    PubMed  CAS  Google Scholar 

  182. Hui L, Zhang X, Wu X et al (2004) Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene 23(17):3013–3023

    PubMed  CAS  Google Scholar 

  183. Xu Q, Lee C (2003) Discovery of novel splice forms and functional analysis of cancer-specific alternative splicing in human expressed sequences. Nucleic Acids Res 31(19):5635–5643

    PubMed  CAS  Google Scholar 

  184. Pan Q, Shai O, Misquitta C et al (2004) Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 16(6):929–941

    PubMed  CAS  Google Scholar 

  185. Zhang C, Li HR, Fan JB et al (2006) Profiling alternatively spliced mRNA isoforms for prostate cancer classification. BMC Bioinformatics 7:202

    PubMed  Google Scholar 

  186. Watahiki A, Waki K, Hayatsu N et al (2004) Libraries enriched for alternatively spliced exons reveal splicing patterns in melanocytes and melanomas. Nat Methods 1(3):233–239

    PubMed  Google Scholar 

  187. Relogio A, Ben-Dov C, Baum M et al (2005) Alternative splicing microarrays reveal functional expression of neuron-specific regulators in Hodgkin lymphoma cells. J Biol Chem 280(6):4779–4784

    PubMed  CAS  Google Scholar 

  188. Li C, Kato M, Shiue L, Shively JE, Ares M Jr, Lin RJ (2006) Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res 66(4):1990–1999

    PubMed  CAS  Google Scholar 

  189. Yeakley JM, Fan JB, Doucet D et al (2002) Profiling alternative splicing on fiber-optic arrays. Nat Biotechnol 20(4):353–358

    PubMed  CAS  Google Scholar 

  190. Li HR, Wang-Rodriguez J, Nair TM et al (2006) Two-dimensional transcriptome profiling: identification of messenger RNA isoform signatures in prostate cancer from archived paraffin-embedded cancer specimens. Cancer Res 66(8):4079–4088

    PubMed  CAS  Google Scholar 

  191. Johnson JM, Castle J, Garrett-Engele P et al (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302(5653):2141–2144

    PubMed  CAS  Google Scholar 

  192. Gardina PJ, Clark TA, Shimada B et al (2006) Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics 7:325

    PubMed  Google Scholar 

  193. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    PubMed  CAS  Google Scholar 

  194. Fededa JP, Petrillo E, Gelfand MS et al (2005) A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol Cell 19(3):393–404

    PubMed  CAS  Google Scholar 

  195. Celotto AM, Graveley BR (2002) Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA 8(6):718–724

    PubMed  CAS  Google Scholar 

  196. Morris KV, Chan SW, Jacobsen SE, Looney DJ (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305(5688):1289–1292

    PubMed  CAS  Google Scholar 

  197. Kim DH, Villeneuve LM, Morris KV, Rossi JJ (2006) Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 13(9):793–797

    PubMed  CAS  Google Scholar 

  198. Goyenvalle A, Vulin A, Fougerousse F et al (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306(5702):1796–1799

    PubMed  CAS  Google Scholar 

  199. Mercatante DR, Bortner CD, Cidlowski JA, Kole R (2001) Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J Biol Chem 276(19):16411–16417

    PubMed  CAS  Google Scholar 

  200. Mercatante DR, Mohler JL, Kole R (2002) Cellular response to an antisense-mediated shift of Bcl-x pre-mRNA splicing and antineoplastic agents. J Biol Chem 277(51):49374–49382

    PubMed  CAS  Google Scholar 

  201. Giles RV, Spiller DG, Clark RE, Tidd DM (1999) Antisense morpholino oligonucleotide analog induces missplicing of C-myc mRNA. Antisense Nucleic Acid Drug Dev 9(2):213–220

    PubMed  CAS  Google Scholar 

  202. Bruno IG, Jin W, Cote GJ (2004) Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum Mol Genet 13(20):2409–2420

    PubMed  CAS  Google Scholar 

  203. Taylor JK, Zhang QQ, Wyatt JR, Dean NM (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17(11):1097–1100

    PubMed  CAS  Google Scholar 

  204. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346

    PubMed  CAS  Google Scholar 

  205. Villemaire J, Dion I, Elela SA, Chabot B (2003) Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem 278(50):50031–50039

    PubMed  CAS  Google Scholar 

  206. Gendron D, Carriero S, Garneau D et al (2006) Modulation of 5′ splice site selection using tailed oligonucleotides carrying splicing signals. BMC Biotechnol 6:5

    PubMed  Google Scholar 

  207. Skordis LA, Dunckley MG, Yue B, Eperon IC, Muntoni F (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A 100(7):4114–4119

    PubMed  CAS  Google Scholar 

  208. Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10(2):120–125

    PubMed  CAS  Google Scholar 

  209. Wilusz JE, Devanney SC, Caputi M (2005) Chimeric peptide nucleic acid compounds modulate splicing of the bcl-x gene in vitro and in vivo. Nucleic Acids Res 33(20):6547–6554

    PubMed  CAS  Google Scholar 

  210. Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311(5758):230–232

    PubMed  CAS  Google Scholar 

  211. Bland CS, Cooper TA (2007) Micromanaging alternative splicing during muscle differentiation. Dev Cell 12(2):171–172

    PubMed  CAS  Google Scholar 

  212. Boutz PL, Chawla G, Stoilov P, Black DL (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev 21(1):71–84

    PubMed  CAS  Google Scholar 

  213. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390–7394

    PubMed  CAS  Google Scholar 

  214. Muraki M, Ohkawara B, Hosoya T et al (2004) Manipulation of alternative splicing by a newly developed inhibitor of Clks. J Biol Chem 279(23):24246–24254

    PubMed  CAS  Google Scholar 

  215. Pilch B, Allemand E, Facompre M et al (2001) Specific inhibition of serine- and arginine-rich splicing factors phosphorylation, spliceosome assembly, and splicing by the antitumor drug NB-506. Cancer Res 61(18):6876–6884

    PubMed  CAS  Google Scholar 

  216. Soret J, Bakkour N, Maire S et al (2005) Selective modification of alternative splicing by indole derivatives that target serine-arginine-rich protein splicing factors. Proc Natl Acad Sci U S A 102(24):8764–8769

    PubMed  CAS  Google Scholar 

  217. Wang Z, Hoffmann HM, Grabowski PJ (1995) Intrinsic U2AF binding is modulated by exon enhancer signals in parallel with changes in splicing activity. RNA 1(1):21–35

    PubMed  CAS  Google Scholar 

  218. Kanopka A, Muhlemann O, Akusjarvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381(6582):535–538

    PubMed  CAS  Google Scholar 

  219. Caputi M, Zahler AM (2002) SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J 21(4):845–855

    PubMed  CAS  Google Scholar 

  220. Vickers SM, Huang ZQ, MacMillan-Crow L, Greendorfer JS, Thompson JA (2002) Ligand activation of alternatively spliced fibroblast growth factor receptor-1 modulates pancreatic adenocarcinoma cell malignancy. J Gastrointest Surg 6(4):546–553

    PubMed  Google Scholar 

  221. Jang JH (2005) Reciprocal relationship in gene expression between FGFR1 and FGFR3: implication for tumorigenesis. Oncogene 24(5):945–948

    PubMed  CAS  Google Scholar 

  222. Kornmann M, Ishiwata T, Matsuda K et al (2002) IIIc isoform of fibroblast growth factor receptor 1 is overexpressed in human pancreatic cancer and enhances tumorigenicity of hamster ductal cells. Gastroenterology 123(1):301–313

    PubMed  CAS  Google Scholar 

  223. Sturla LM, Merrick AE, Burchill SA (2003) FGFR3IIIS: a novel soluble FGFR3 spliced variant that modulates growth is frequently expressed in tumour cells. Br J Cancer 89(7):1276–1284

    PubMed  CAS  Google Scholar 

  224. Jang JH, Shin KH, Park YJ, Lee RJ, McKeehan WL, Park JG (2000) Novel transcripts of fibroblast growth factor receptor 3 reveal aberrant splicing and activation of cryptic splice sequences in colorectal cancer. Cancer Res 60(15):4049–4052

    PubMed  CAS  Google Scholar 

  225. Takaishi S, Sawada M, Morita Y, Seno H, Fukuzawa H, Chiba T (2000) Identification of a novel alternative splicing of human FGF receptor 4: soluble-form splice variant expressed in human gastrointestinal epithelial cells. Biochem Biophys Res Commun 267(2):658–662

    PubMed  CAS  Google Scholar 

  226. Leong CO, Vidnovic N, DeYoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117(5):1370–1380

    PubMed  CAS  Google Scholar 

  227. Nyman U, Sobczak-Pluta A, Vlachos P, Perlmann T, Zhivotovsky B, Joseph B (2005) Full-length p73alpha represses drug-induced apoptosis in small cell lung carcinoma cells. J Biol Chem 280(40):34159–34169

    PubMed  CAS  Google Scholar 

  228. Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS (2006) Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281(45):34096–34103

    PubMed  CAS  Google Scholar 

  229. Steinman HA, Burstein E, Lengner C et al (2004) An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem 279(6):4877–4886

    PubMed  CAS  Google Scholar 

  230. Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G (2006) Genotoxic stress Induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res 66(19):9502–9508

    PubMed  CAS  Google Scholar 

  231. Bartel F, Schulz J, Bohnke A et al (2005) Significance of HDMX-S (or MDM4) mRNA splice variant overexpression and HDMX gene amplification on primary soft tissue sarcoma prognosis. Int J Cancer 117(3):469–475

    PubMed  CAS  Google Scholar 

  232. Giglio S, Mancini F, Gentiletti F et al (2005) Identification of an aberrantly spliced form of HDMX in human tumors: a new mechanism for HDM2 stabilization. Cancer Res 65(21):9687–9694

    PubMed  CAS  Google Scholar 

  233. Agrawal S, Eng C (2006) Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet 15(5):777–787

    PubMed  CAS  Google Scholar 

  234. Colgin LM, Wilkinson C, Englezou A, Kilian A, Robinson MO, Reddel RR (2000) The hTERTalpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2(5):426–432

    PubMed  CAS  Google Scholar 

  235. Burd CJ, Petre CE, Morey LM et al (2006) Cyclin D1b variant influences prostate cancer growth through aberrant androgen receptor regulation. Proc Natl Acad Sci U S A 103(7):2190–2195

    PubMed  CAS  Google Scholar 

  236. Knudsen KE, Diehl JA, Haiman CA, Knudsen ES (2006) Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25(11):1620–1628

    PubMed  CAS  Google Scholar 

  237. Leung YK, Lau KM, Mobley J, Jiang Z, Ho SM (2005) Overexpression of cytochrome P450 1A1 and its novel spliced variant in ovarian cancer cells: alternative subcellular enzyme compartmentation may contribute to carcinogenesis. Cancer Res 65(9):3726–3734

    PubMed  CAS  Google Scholar 

  238. Yu Y, Jiang X, Schoch BS, Carroll RS, Black PM, Johnson MD (2007) Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res 67(1):130–138

    PubMed  CAS  Google Scholar 

  239. Di Modugno F, DeMonte L, Balsamo M et al (2007) Molecular cloning of hMena (ENAH) and its splice variant hMena +11a: epidermal growth factor increases their expression and stimulates hMena +11a phosphorylation in breast cancer cell lines. Cancer Res 67(6):2657–2665

    PubMed  Google Scholar 

  240. Carson DJ, Santoro IM, Groden J (2004) Isoforms of the APC tumor suppressor and their ability to inhibit cell growth and tumorigenicity. Oncogene 23(42):7144–7148

    PubMed  CAS  Google Scholar 

  241. Kawasaki Y, Sato R, Akiyama T (2003) Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 5(3):211–215

    PubMed  CAS  Google Scholar 

  242. Cooper DL, Dougherty GJ (1995) To metastasize or not? Selection of CD44 splice sites. Nat Med 1(7):635–637

    PubMed  CAS  Google Scholar 

  243. Scotlandi K, Zuntini M, Manara MC, et al. (2007) CD99 isoforms dictate opposite functions in tumour malignancy and metastases by activating or repressing c-Src kinase activity. Oncogene 26(46):6604–6618

    PubMed  CAS  Google Scholar 

  244. Byun HJ, Hong IK, Kim E et al (2006) A splice variant of CD99 increases motility and MMP-9 expression of human breast cancer cells through the AKT-, ERK-, and JNK-dependent AP-1 activation signaling pathways. J Biol Chem 281(46):34833–34847

    PubMed  CAS  Google Scholar 

  245. Oyama F, Hirohashi S, Sakamoto M, Titani K, Sekiguchi K (1993) Coordinate oncodevelopmental modulation of alternative splicing of fibronectin pre-messenger RNA at ED-A, ED-B, and CS1 regions in human liver tumors. Cancer Res 53(9):2005–2011

    PubMed  CAS  Google Scholar 

  246. Khan ZA, Chan BM, Uniyal S et al (2005) EDB fibronectin and angiogenesis: a novel mechanistic pathway. Angiogenesis 8(3):183–196

    PubMed  CAS  Google Scholar 

  247. Wang L, Lin SH, Wu WG et al (2000) C-CAM1, a candidate tumor suppressor gene, is abnormally expressed in primary lung cancers. Clin Cancer Res 6(8):2988–2993

    PubMed  CAS  Google Scholar 

  248. Luo W, Wood CG, Earley K, Hung MC, Lin SH (1997) Suppression of tumorigenicity of breast cancer cells by an epithelial cell adhesion molecule (C-CAM1): the adhesion and growth suppression are mediated by different domains. Oncogene 14(14):1697–1704

    PubMed  CAS  Google Scholar 

  249. DiFeo A, Narla G, Hirshfeld J et al (2006) Roles of KLF6 and KLF6-SV1 in ovarian cancer progression and intraperitoneal dissemination. Clin Cancer Res 12(12):3730–3739

    PubMed  CAS  Google Scholar 

  250. Camacho-Vanegas O, Narla G, Teixeira MS, et al. (2007) Functional inactivation of the KLF6 tumor suppressor gene by loss of heterozygosity and increased alternative splicing in glioblastoma. Int J Cancer 121(6):1390–1395

    PubMed  CAS  Google Scholar 

  251. Esufali S, Charames GS, Pethe VV, Buongiorno P, Bapat B (2007) Activation of tumor-specific splice variant Rac1b by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res 67(6):2469–2479

    PubMed  CAS  Google Scholar 

  252. Matos P, Jordan P (2006) Rac1, but not Rac1B, stimulates RelB-mediated gene transcription in colorectal cancer cells. J Biol Chem 281(19):13724–13732

    PubMed  CAS  Google Scholar 

  253. Takafuji V, Forgues M, Unsworth E, Goldsmith P, Wang XW (2007) An osteopontin fragment is essential for tumor cell invasion in hepatocellular carcinoma. Oncogene 26(44):6361–6371

    PubMed  CAS  Google Scholar 

  254. Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F (2001) Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumour cell proliferation. Oncogene 20(17):2101–2111

    PubMed  CAS  Google Scholar 

  255. Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822–7835

    PubMed  CAS  Google Scholar 

  256. Lokeshwar VB, Estrella V, Lopez L et al (2006) HYAL1-v1, an alternatively spliced variant of HYAL1 hyaluronidase: a negative regulator of bladder cancer. Cancer Res 66(23):11219–11227

    PubMed  CAS  Google Scholar 

  257. van Nimwegen MJ, Verkoeijen S, van Buren L, Burg D, van de Water B (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65(11):4698–4706

    PubMed  Google Scholar 

  258. Song SW, Fuller GN, Zheng H, Zhang W (2005) Inactivation of the invasion inhibitory gene IIp45 by alternative splicing in gliomas. Cancer Res 65(9):3562–3567

    PubMed  CAS  Google Scholar 

  259. Luther T, Kotzsch M, Meye A et al (2003) Identification of a novel urokinase receptor splice variant and its prognostic relevance in breast cancer. Thromb Haemost 89(4):705–717

    PubMed  CAS  Google Scholar 

  260. Midis GP, Shen Y, Owen-Schaub LB (1996) Elevated soluble Fas (sFas) levels in nonhematopoietic human malignancy. Cancer Res 56(17):3870–3874

    PubMed  CAS  Google Scholar 

  261. Ugurel S, Rappl G, Tilgen W, Reinhold U (2001) Increased soluble CD95 (sFas/CD95) serum level correlates with poor prognosis in melanoma patients. Clin Cancer Res 7(5):1282–1286

    PubMed  CAS  Google Scholar 

  262. Ueno T, Toi M, Tominaga T (1999) Circulating soluble Fas concentration in breast cancer patients. Clin Cancer Res 5(11):3529–3533

    PubMed  CAS  Google Scholar 

  263. Nonomura N, Nishimura K, Ono Y et al (2000) Soluble Fas in serum from patients with renal cell carcinoma. Urology 55(1):151–155

    PubMed  CAS  Google Scholar 

  264. Benedict MA, Hu Y, Inohara N, Nunez G (2000) Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem 275(12):8461–8468

    PubMed  CAS  Google Scholar 

  265. Ogawa T, Shiga K, Hashimoto S, Kobayashi T, Horii A, Furukawa T (2003) APAF-1-ALT, a novel alternative splicing form of APAF-1, potentially causes impeded ability of undergoing DNA damage-induced apoptosis in the LNCaP human prostate cancer cell line. Biochem Biophys Res Commun 306(2):537–543

    PubMed  CAS  Google Scholar 

  266. Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92(2):212–216

    PubMed  CAS  Google Scholar 

  267. Krieg A, Mahotka C, Krieg T et al (2002) Expression of different survivin variants in gastric carcinomas: first clues to a role of survivin-2B in tumour progression. Br J Cancer 86(5):737–743

    PubMed  CAS  Google Scholar 

  268. Vegran F, Boidot R, Oudin C, Riedinger JM, Lizard-Nacol S (2005) Distinct expression of Survivin splice variants in breast carcinomas. Int J Oncol 27(4):1151–1157

    PubMed  CAS  Google Scholar 

  269. Tsujimoto Y, Croce CM (1986) Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc Natl Acad Sci U S A 83(14):5214–5218

    PubMed  CAS  Google Scholar 

  270. Tanaka S, Saito K, Reed JC (1993) Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J Biol Chem 268(15):10920–10926

    PubMed  CAS  Google Scholar 

  271. Boise LH, Gonzalez-Garcia M, Postema CE et al (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608

    PubMed  CAS  Google Scholar 

  272. Marone M, Scambia G, Mozzetti S et al (1998) bcl-2, bax, bcl-XL, and bcl-XS expression in normal and neoplastic ovarian tissues. Clin Cancer Res 4(2):517–524

    PubMed  CAS  Google Scholar 

  273. Wu J, Shao ZM, Shen ZZ et al (2000) Significance of apoptosis and apoptotic-related proteins, Bcl-2, and Bax in primary breast cancer. Breast J 6(1):44–52

    PubMed  CAS  Google Scholar 

  274. Schmitt E, Paquet C, Beauchemin M, Dever-Bertrand J, Bertrand R (2000) Characterization of Bax-sigma, a cell death-inducing isoform of Bax. Biochem Biophys Res Commun 270(3):868–879

    PubMed  CAS  Google Scholar 

  275. Shi B, Triebe D, Kajiji S, Iwata KK, Bruskin A, Mahajna J (1999) Identification and characterization of baxepsilon, a novel bax variant missing the BH2 and the transmembrane domains. Biochem Biophys Res Commun 254(3):779–785

    PubMed  CAS  Google Scholar 

  276. Chang DW, Xing Z, Pan Y et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21(14):3704–3714

    PubMed  CAS  Google Scholar 

  277. Longley DB, Wilson TR, McEwan M et al (2006) c-FLIP inhibits chemotherapy-induced colorectal cancer cell death. Oncogene 25(6):838–848

    PubMed  CAS  Google Scholar 

  278. Mulherkar N, Ramaswamy M, Mordi DC, Prabhakar BS (2006) MADD/DENN splice variant of the IG20 gene is necessary and sufficient for cancer cell survival. Oncogene 25(47):6252–6261

    PubMed  CAS  Google Scholar 

  279. Bae J, Leo CP, Hsu SY, Hsueh AJ (2000) MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275(33):25255–25261

    PubMed  CAS  Google Scholar 

  280. Liu JW, Chandra D, Tang SH, Chopra D, Tang DG (2002) Identification and characterization of Bimgamma, a novel proapoptotic BH3-only splice variant of Bim. Cancer Res 62(10):2976–2981

    PubMed  CAS  Google Scholar 

  281. Yamaguchi T, Okada T, Takeuchi K et al (2003) Enhancement of thymidine kinase-mediated killing of malignant glioma by BimS, a BH3-only cell death activator. Gene Ther 10(5):375–385

    PubMed  CAS  Google Scholar 

  282. Abrams MT, Robertson NM, Yoon K, Wickstrom E (2004) Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 279(53):55809–55817

    PubMed  CAS  Google Scholar 

  283. Wang L, Miura M, Bergeron L, Zhu H, Yuan J (1994) Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell 78(5):739–750

    PubMed  CAS  Google Scholar 

  284. Droin N, Beauchemin M, Solary E, Bertrand R (2000) Identification of a caspase-2 isoform that behaves as an endogenous inhibitor of the caspase cascade. Cancer Res 60(24):7039–7047

    PubMed  CAS  Google Scholar 

  285. Vegran F, Boidot R, Oudin C, Riedinger JM, Bonnetain F, Lizard-Nacol S (2006) Overexpression of caspase-3 s splice variant in locally advanced breast carcinoma is associated with poor response to neoadjuvant chemotherapy. Clin Cancer Res 12(19):5794–5800

    PubMed  CAS  Google Scholar 

  286. Muzio M, Chinnaiyan AM, Kischkel FC et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85(6):817–827

    PubMed  CAS  Google Scholar 

  287. Himeji D, Horiuchi T, Tsukamoto H, Hayashi K, Watanabe T, Harada M (2002) Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood 99(11):4070–4078

    PubMed  CAS  Google Scholar 

  288. Waltereit R, Weller M (2002) The role of caspases 9 and 9-short (9S) in death ligand- and drug-induced apoptosis in human astrocytoma cells. Brain Res Mol Brain Res 106(1–2):42–49

    PubMed  CAS  Google Scholar 

  289. Lee SB, Haber DA (2001) Wilms tumor and the WT1 gene. Exp Cell Res 264(1):74–99

    PubMed  CAS  Google Scholar 

  290. Richard DJ, Schumacher V, Royer-Pokora B, Roberts SG (2001) Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes Dev 15(3):328–339

    PubMed  CAS  Google Scholar 

  291. Tojo Y, Bandoh S, Fujita J et al (2003) Aberrant messenger RNA splicing of the cytokeratin 8 in lung cancer. Lung Cancer 42(2):153–161

    PubMed  Google Scholar 

  292. Yin F, Hu WH, Qiao TD, Fan DM (2004) Multidrug resistant effect of alternative splicing form of MAD2 gene-MAD2beta on human gastric cancer cell. Zhonghua Zhong Liu Za Zhi 26(4):201–204

    PubMed  CAS  Google Scholar 

  293. Lixia M, Zhijian C, Chao S, Chaojiang G, Congyi Z (2007) Alternative splicing of breast cancer associated gene BRCA1 from breast cancer cell line. J Biochem Mol Biol 40(1):15–21

    PubMed  Google Scholar 

  294. Orban TI, Olah E (2003) Emerging roles of BRCA1 alternative splicing. Mol Pathol 56(4):191–197

    PubMed  CAS  Google Scholar 

  295. Bieche I, Lidereau R (1999) Increased level of exon 12 alternatively spliced BRCA2 transcripts in tumor breast tissue compared with normal tissue. Cancer Res 59(11):2546–2550

    PubMed  CAS  Google Scholar 

  296. Khan SG, Muniz-Medina V, Shahlavi T et al (2002) The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 30(16):3624–3631

    PubMed  CAS  Google Scholar 

  297. Shiote Y, Ouchida M, Jitsumori Y et al (2006) Multiple splicing variants of Naf1/ABIN-1 transcripts and their alterations in hematopoietic tumors. Int J Mol Med 18(5):917–923

    PubMed  CAS  Google Scholar 

  298. Lee EJ, Jo M, Park J, Zhang W, Lee JH (2006) Alternative splicing variants of IRF-1 lacking exons 7, 8, and 9 in cervical cancer. Biochem Biophys Res Commun 347(4):882–888

    PubMed  CAS  Google Scholar 

  299. Hube F, Guo J, Chooniedass-Kothari S et al (2006) Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 25(7):418–428

    PubMed  CAS  Google Scholar 

  300. Wang L, Duke L, Zhang PS et al (2003) Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res 63(15):4724–4730

    PubMed  CAS  Google Scholar 

  301. Katoh M, Kirikoshi H, Terasaki H, Shiokawa K (2001) WNT2B2 mRNA, up-regulated in primary gastric cancer, is a positive regulator of the WNT- beta-catenin-TCF signaling pathway. Biochem Biophys Res Commun 289(5):1093–1098

    PubMed  CAS  Google Scholar 

  302. Lee JH, Gao CF, Lee CC, Kim MD (2006) Vande Woude GF. An alternatively spliced form of Met receptor is tumorigenic. Exp Mol Med 38(5):565–573

    PubMed  CAS  Google Scholar 

  303. Treeck O, Pfeiler G, Horn F et al (2007) Novel estrogen receptor beta transcript variants identified in human breast cancer cells affect cell growth and apoptosis of COS-1 cells. Mol Cell Endocrinol 264(1–2):50–60

    PubMed  CAS  Google Scholar 

  304. Pind MT, Watson PH (2003) SR protein expression and CD44 splicing pattern in human breast tumours. Breast Cancer Res Treat 79(1):75–82

    PubMed  CAS  Google Scholar 

  305. Patry C, Bouchard L, Labrecque P et al (2003) Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 63(22):7679–7688

    PubMed  CAS  Google Scholar 

  306. Zhou J, Nong L, Wloch M, Cantor A, Mulshine JL, Tockman MS (2001) Expression of early lung cancer detection marker: hnRNP-A2/B1 and its relation to microsatellite alteration in non-small cell lung cancer. Lung Cancer 34(3):341–350

    PubMed  CAS  Google Scholar 

  307. Zech VF, Dlaska M, Tzankov A, Hilbe W (2006) Prognostic and diagnostic relevance of hnRNP A2/B1, hnRNP B1 and S100 A2 in non-small cell lung cancer. Cancer Detect Prev 30(5):395–402

    PubMed  CAS  Google Scholar 

  308. Hiraki A, Murakami T, Aoe K et al (2006) Heterogeneous nuclear ribonucleoprotein B1 expression in malignant mesothelioma. Cancer Sci 97(11):1175–1181

    PubMed  CAS  Google Scholar 

  309. Brose MS, Volpe P, Paul K et al (2004) Characterization of two novel BRCA1 germ-line mutations involving splice donor sites. Genet Test 8(2):133–138

    PubMed  CAS  Google Scholar 

  310. Chen X, Truong TT, Weaver J et al (2006) Intronic alterations in BRCA1 and BRCA2: effect on mRNA splicing fidelity and expression. Hum Mutat 27(5):427–435

    PubMed  CAS  Google Scholar 

  311. Bonatti F, Pepe C, Tancredi M et al (2006) RNA-based analysis of BRCA1 and BRCA2 gene alterations. Cancer Genet Cytogenet 170(2):93–101

    PubMed  CAS  Google Scholar 

  312. Humar B, Toro T, Graziano F et al (2002) Novel germline CDH1 mutations in hereditary diffuse gastric cancer families. Hum Mutat 19(5):518–525

    PubMed  CAS  Google Scholar 

  313. Loo JC, Liu L, Hao A et al (2003) Germline splicing mutations of CDKN2A predispose to melanoma. Oncogene 22(41):6387–6394

    PubMed  CAS  Google Scholar 

  314. Wolf M, Hemminki A, Kivioja A et al (1998) A novel splice site mutation of the EXT2 gene in a finnish hereditary multiple exostoses family. Mutations in brief no. 197. Online. Hum Mutat 12(5):362

    PubMed  CAS  Google Scholar 

  315. Tamary H, Dgany O, Toledano H et al (2004) Molecular characterization of three novel Fanconi anemia mutations in Israeli Arabs. Eur J Haematol 72(5):330–335

    PubMed  CAS  Google Scholar 

  316. Hastings ML, Resta N, Traum D, Stella A, Guanti G, Krainer AR (2005) An LKB1 AT-AC intron mutation causes Peutz-Jeghers syndrome via splicing at noncanonical cryptic splice sites. Nat Struct Mol Biol 12(1):54–59

    PubMed  CAS  Google Scholar 

  317. Turner JJ, Leotlela PD, Pannett AA et al (2002) Frequent occurrence of an intron 4 mutation in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 87(6):2688–2693

    PubMed  CAS  Google Scholar 

  318. Baehring J, Sutter C, Kadmon M, Doeberitz MV, Gebert J (2006) A ‘nonsense’ mutation leads to aberrant splicing of hMLH1 in a German hereditary non-polyposis colorectal cancer family. Fam Cancer 5(2):195–199

    PubMed  CAS  Google Scholar 

  319. Nemoto H, Tate G, Schirinzi A et al (2006) Novel NF1 gene mutation in a Japanese patient with neurofibromatosis type 1 and a gastrointestinal stromal tumor. J Gastroenterol 41(4):378–382

    PubMed  Google Scholar 

  320. Reifenberger J, Rauch L, Beckmann MW, Megahed M, Ruzicka T, Reifenberger G (2003) Cowden’s disease: clinical and molecular genetic findings in a patient with a novel PTEN germline mutation. Br J Dermatol 148(5):1040–1046

    PubMed  CAS  Google Scholar 

  321. Niemann S, Muller U, Engelhardt D, Lohse P (2003) Autosomal dominant malignant and catecholamine-producing paraganglioma caused by a splice donor site mutation in SDHC. Hum Genet 113(1):92–94

    PubMed  Google Scholar 

  322. Martella M, Salviati L, Casarin A et al (2006) Molecular analysis of two uncharacterized sequence variants of the VHL gene. J Hum Genet 51(11):964–968

    PubMed  CAS  Google Scholar 

  323. Abu-Amero KK, Owaidah TM, Al Jefri A, Al-Ghonaium A, Fawaz IM, Al-Hamed MH (2004) A novel splice site mutation in the WAS gene causes Wiskott-Aldrich syndrome in two siblings of a Saudi family. Blood Coagul Fibrinolysis 15(7):599–603

    PubMed  CAS  Google Scholar 

  324. Tanioka M, Budiyant A, Ueda T et al (2005) A novel XPA gene mutation and its functional analysis in a Japanese patient with xeroderma pigmentosum group A. J Invest Dermatol 125(2):244–246

    PubMed  CAS  Google Scholar 

  325. Spirio L, Green J, Robertson J et al (1999) The identical 5′ splice-site acceptor mutation in five attenuated APC families from Newfoundland demonstrates a founder effect. Hum Genet 105(5):388–398

    PubMed  CAS  Google Scholar 

  326. Chen LL, Sabripour M, Wu EF, Prieto VG, Fuller GN, Frazier ML (2005) A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors. Oncogene 24(26):4271–4280

    PubMed  CAS  Google Scholar 

  327. Tala HP, Carvajal CA, Gonzalez AA et al (2006) New splicing mutation of MEN1 gene affecting the translocation of menin to the nucleus. J Endocrinol Invest 29(10):888–893

    PubMed  CAS  Google Scholar 

  328. Martinez R, Schackert HK, von Kannen S, Lichter P, Joos S, Schackert G (2003) Independent molecular development of metachronous glioblastomas with extended intervening recurrence-free interval. Brain Pathol 13(4):598–607

    PubMed  CAS  Google Scholar 

  329. Ariga T, Yamada M, Pudua FR, Sakiyama Y (1996) Detection of a novel splice-site mutation that results in skipping exon 3 of the WASP gene in a patient with Wiskott-Aldrich syndrome. Biochim Biophys Acta 1317(3):158–160

    PubMed  CAS  Google Scholar 

  330. Kanemoto K, Ishikura K, Ariyasu D et al (2007) WT1 intron 9 splice acceptor site mutation in a 46, XY male with focal segmental glomerulosclerosis. Pediatr Nephrol 22(3):454–458

    PubMed  Google Scholar 

  331. Aceto G, Cristina Curia M, Veschi S et al (2005) Mutations of APC and MYH in unrelated Italian patients with adenomatous polyposis coli. Hum Mutat 26(4):394

    PubMed  Google Scholar 

  332. Rutter JL, Goldstein AM, Davila MR, Tucker MA, Struewing JP (2003) CDKN2A point mutations D153spl(c.457G > T) and IVS2 + 1G > T result in aberrant splice products affecting both p16INK4a and p14ARF. Oncogene 22(28):4444–4448

    PubMed  CAS  Google Scholar 

  333. Pagenstecher C, Wehner M, Friedl W et al (2006) Aberrant splicing in MLH1 and MSH2 due to exonic and intronic variants. Hum Genet 119(1–2):9–22

    PubMed  CAS  Google Scholar 

  334. Raponi M, Upadhyaya M, Baralle D (2006) Functional splicing assay shows a pathogenic intronic mutation in neurofibromatosis type 1 (NF1) due to intronic sequence exonization. Hum Mutat 27(3):294–295

    PubMed  CAS  Google Scholar 

  335. Trojan J, Plotz G, Brieger A et al (2001) Activation of a cryptic splice site of PTEN and loss of heterozygosity in benign skin lesions in Cowden disease. J Invest Dermatol 117(6):1650–1653

    PubMed  CAS  Google Scholar 

  336. Andreu N, Carreras C, Prieto F, Estivill X, Volpini V, Fillat C (2003) Identification and characterization of a novel splice-site mutation in a patient with Wiskott-Aldrich syndrome. J Hum Genet 48(11):590–593

    PubMed  CAS  Google Scholar 

  337. Heikkinen K, Mansikka V, Karppinen SM, Rapakko K, Winqvist R (2005) Mutation analysis of the ATR gene in breast and ovarian cancer families. Breast Cancer Res 7(4):R495–R501

    PubMed  CAS  Google Scholar 

  338. Mazoyer S, Puget N, Perrin-Vidoz L, Lynch HT, Serova-Sinilnikova OM, Lenoir GM (1998) A BRCA1 nonsense mutation causes exon skipping. Am J Hum Genet 62(3):713–715

    PubMed  CAS  Google Scholar 

  339. Fackenthal JD, Cartegni L, Krainer AR, Olopade OI (2002) BRCA2 T2722R is a deleterious allele that causes exon skipping. Am J Hum Genet 71(3):625–631

    PubMed  CAS  Google Scholar 

  340. McVety S, Li L, Gordon PH, Chong G, Foulkes WD (2006) Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family. J Med Genet 43(2):153–156

    PubMed  CAS  Google Scholar 

  341. Baralle M, Skoko N, Knezevich A et al (2006) NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett 580(18):4449–4456

    PubMed  CAS  Google Scholar 

  342. Bottillo I, De Luca A, Schirinzi A et al (2007) Functional analysis of splicing mutations in exon 7 of NF1 gene. BMC Med Genet 8:4

    PubMed  Google Scholar 

  343. Suphapeetiporn K, Kongkam P, Tantivatana J, Sinthuwiwat T, Tongkobpetch S, Shotelersuk V (2006) PTEN c.511C > T nonsense mutation in a BRRS family disrupts a potential exonic splicing enhancer and causes exon skipping. Jpn J Clin Oncol 36(12):814–821

    PubMed  Google Scholar 

  344. Gorlov IP, Gorlova OY, Frazier ML, Amos CI (2004) Missense mutations in cancer suppressor gene TP53 are colocalized with exonic splicing enhancers (ESEs). Mutat Res 554(1–2):175–183

    PubMed  CAS  Google Scholar 

  345. Narla G, Difeo A, Reeves HL et al (2005) A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65(4):1213–1222

    PubMed  CAS  Google Scholar 

  346. Khan SG, Metin A, Gozukara E et al (2004) Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk. Hum Mol Genet 13(3):343–352

    PubMed  CAS  Google Scholar 

  347. De Klein A, Riegman PH, Bijlsma EK et al (1998) A G– > A transition creates a branch point sequence and activation of a cryptic exon, resulting in the hereditary disorder neurofibromatosis 2. Hum Mol Genet 7(3):393–398

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Chabot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shkreta, L. et al. (2013). Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing. In: Wu, J. (eds) RNA and Cancer. Cancer Treatment and Research, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31659-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31659-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31658-6

  • Online ISBN: 978-3-642-31659-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics