Skip to main content

Boron Neutron Capture Therapy: Application of Radiobiological Principles

  • Chapter
  • First Online:
Neutron Capture Therapy

Abstract

The radiobiological characteristics of the different dose components of BNCT exposure are examined. Dose-rate determines the biological effectiveness of γ-rays, due to the capacity of cells to repair DNA damage from this low-LET radiation. Photon dose-rate has been largely overlooked in the application of BNCT. Recoil protons vary in their relative biological effectiveness (RBE) as a function of neutron energy and tissue endpoint. Thus the energy spectrum of a beam will influence the RBE of this component of the dose. Protons, of the energy produced by nitrogen capture, have not been studied. In practice protons from nitrogen capture have been combined with the recoil proton contribution into a total neutron dose. The relative biological effectiveness of the products of the boron capture reaction are a composite of the RBE of the short range products and the biodistribution of the boron, referred to collectively as the compound biological effectiveness (CBE) factor. The caution needed in the application of these factors for different normal tissues and tumors is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barth RF, Yang WL, Rotaru JH et al (1997) Neutron-capture therapy of brain-tumours – enhanced survival following intracarotid injection of either sodium borocaptate or boronophenylalanine with or without blood–brain-barrier disruption. Cancer Res 57:1129–1136

    PubMed  CAS  Google Scholar 

  2. Barth RF, Yang W, Coderre JA (2003) Rat brain tumor models to assess the efficacy of boron neutron capture therapy: a critical evaluation. J Neurooncol 62:61–74

    PubMed  Google Scholar 

  3. Barth RF, Coderre JA, Vicente MG et al (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002

    Article  PubMed  CAS  Google Scholar 

  4. Bedford JS, Mitchell JB (1973) Dose-rate effects in synchronous mammalian cells in culture. Radiat Res 54:316–327

    Article  PubMed  CAS  Google Scholar 

  5. Belli M, Cherubini R, Finotto S et al (1989) RBE-LET relationship for the survival of V79 cells irradiated with low energy protons. Int J Radiat Biol 55:93–104

    Article  PubMed  CAS  Google Scholar 

  6. Benczik J, Seppälä T, Snellman M et al (2003) Evaluation of the relative biological effectiveness of a clinical epithermal neutron beam using dog brain. Radiat Res 159:199–209

    Article  PubMed  CAS  Google Scholar 

  7. Berenbaum MC, Hall GW, Hoyes AD (1986) Cerebral photosensitisation by haematoporphyrin derivative. Evidence for an endothelial site of action. Br J Cancer 53:81–89

    Article  PubMed  CAS  Google Scholar 

  8. Cárabe-Fernández A, Dale RG, Jones B (2007) The incorporation of the concept of minimum RBE (RBEmin) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments. Int J Radiat Biol 83:27–39

    Article  PubMed  Google Scholar 

  9. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–264

    Article  PubMed  CAS  Google Scholar 

  10. Chen B, Pogue BW, Hoopes PJ et al (2005) Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int J Radiat Oncol Biol Phys 61:1216–1226

    Article  PubMed  CAS  Google Scholar 

  11. Coderre JA (1992) A phase 1 biodistribution study of p-boronophenylalanine. In: Moss R, Gabel D (eds) Boron neutron capture therapy: towards clinical trials of glioma with BNCT. Plenum Press, New York, pp 111–121

    Google Scholar 

  12. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18

    Article  PubMed  CAS  Google Scholar 

  13. Coderre JA, Slatkin DN, Micca PL et al (1991) Boron neutron capture therapy of a murine melanoma with para-boronophenylalanine – dose response analysis using a morbidity index. Radiat Res 128:177–185

    Article  PubMed  CAS  Google Scholar 

  14. Coderre JA, Joel DD, Micca PL et al (1992) Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine. Radiat Res 129:290–296

    Article  PubMed  CAS  Google Scholar 

  15. Coderre JA, Makar MS, Micca PL et al (1993) Derivations of relative biological effectiveness for the high-LET radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Int J Radiat Oncol Biol Phys 27:1121–1129

    Article  PubMed  CAS  Google Scholar 

  16. Coderre JA, Button TM, Micca PL et al (1994) Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys 30:643–652

    Article  PubMed  CAS  Google Scholar 

  17. Coderre JA, Elowitz EE, Chadha M et al (1997) Boron neutron capture therapy of glioblastoma multiforme using the p-boronophenylalanine-fructose complex and epithermal neutrons: trial design and early clinical results. J Neurooncol 33:141–152

    Article  PubMed  CAS  Google Scholar 

  18. Coderre JA, Chanana AD, Joel DD et al (1998) Biodistribution of boronophenylalanine in patients with glioblastoma multiforme: boron concentration correlates with tumor cellularity. Radiat Res 149:163–170

    Article  PubMed  CAS  Google Scholar 

  19. Coderre JA, Morris GM, Micca PL et al (1999) The effects of boron neutron capture irradiation on oral mucosa: evaluation using a rat tongue model. Radiat Res 152:113–118

    Article  PubMed  CAS  Google Scholar 

  20. Coderre JA, Morris GM, Micca PL et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    Article  PubMed  CAS  Google Scholar 

  21. Down JD, Easton DF, Steel GG (1986) Repair in the mouse lung during low dose-rate irradiation. Radiother Oncol 6:29–42

    Article  PubMed  CAS  Google Scholar 

  22. Farr LE, Sweet WH, Robertson JS et al (1954) Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roentgenol Radium Ther Nucl Med 71:279–293

    PubMed  CAS  Google Scholar 

  23. Field SB (1976) An historical survey of radiobiology and radiotherapy with fast neutrons. Curr Top Radiat Res Q 11:1–86

    PubMed  CAS  Google Scholar 

  24. Fike JR, Cann CE, Davis RL et al (1984) Computed tomography analysis of the canine brain: effects of hemi-brain x irradiation. Radiat Res 99:294–310

    Article  PubMed  CAS  Google Scholar 

  25. Fowler JF (1982) Workshop summary. Int J Radiat Oncol Biol Phys 8:2207–2210

    Article  Google Scholar 

  26. Fu KK (1991) Influence of dose rate on normal tissue tolerance. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven, New York, pp 69–90

    Google Scholar 

  27. Fukuda H, Hiratsuka J, Honda C et al (1994) Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the skin. Radiat Res 138:435–442

    Article  PubMed  CAS  Google Scholar 

  28. Gabel D, Philipp KH, Wheeler FJ et al (1998) The compound factor of the 10B(n, α)7Li reaction from borocaptate sodium and the relative biological effectiveness of recoil protons for induction of brain damage in boron neutron capture therapy. Radiat Res 149:378–386

    Article  PubMed  CAS  Google Scholar 

  29. Gavin PR, Wheeler FJ, Huiskamp R et al (1992) Large animal studies of normal tissue tolerance using an epithermal neutron beam and borocaptate sodium. In: Moss R, Gabel D (eds) Boron neutron capture therapy: towards clinical trials of glioma. Plenum Press, New York, pp 197–209

    Google Scholar 

  30. Gavin P, Kraft S, Huiskamp R, Coderre J (1997) A review: CNS effects and normal tissue tolerance in dogs. J Neurooncol 33:71–80

    Article  PubMed  CAS  Google Scholar 

  31. Gueulette J, Beauduin M, Grégoire V et al (1996) RBE variation between fast neutron beams as a function of energy. Intercomparison involving 7 neutron therapy facilities. Bull Cancer Radiother 83(Suppl):55s–63s

    PubMed  Google Scholar 

  32. Gueulette J, Binns PJ, De Coster BM et al (2005) RBE of the MIT epithermal neutron beam for crypt cell regeneration in mice. Radiat Res 164:805–809

    Article  PubMed  CAS  Google Scholar 

  33. Gueulette J, Liu H-M, Jiang S-H et al (2006) Radiobiological characterization of the epithermal neutron beam produced at the Tsing Hua open-pool reactor (THOR) for BNCT: comparison with other BNCT facilities. Ther Radiol Oncol 13:135–146

    Google Scholar 

  34. Hall EJ, Novak JK, Kellerer AM et al (1975) RBE as a function of neutron energy. I. Experimental observations. Radiat Res 64:245–255

    Article  PubMed  CAS  Google Scholar 

  35. Heber E, Trivillin VA, Nigg D et al (2004) Biodistribution of GB-10 (Na 102 B10H10) compound for boron neutron capture therapy (BNCT) in an experimental model of oral cancer in the hamster cheek pouch. Arch Oral Biol 49:313–324

    Article  PubMed  CAS  Google Scholar 

  36. Heber EM, Trivillin VA, Nigg DW et al (2006) Homogeneous boron targeting of heterogeneous tumors for boron neutron capture therapy (BNCT): chemical analyses in the hamster cheek pouch oral cancer model. Arch Oral Biol 51:922–929

    Article  PubMed  CAS  Google Scholar 

  37. Hiratsuka J, Fukuda H, Kobayashi T et al (1991) The relative biological effectiveness of B-10-neutron capture therapy for early skin reaction in the hamster. Radiat Res 128:186–191

    Article  PubMed  CAS  Google Scholar 

  38. Hopewell JW, Morris GM, Coderre JA (1994) Determination of radiobiological parameters for the safe clinical application of BNCT. In: Auterinen I, Kallio M (eds) Proceedings of the CLINCT BNC T Workshop. Helsinki University of Technology Report TKK-F-A718, pp 86–93

    Google Scholar 

  39. Hopewell JW, Benczik J, Mason A (2009) Radiobiology program requirements for boron neutron capture therapy at a nuclear research reactor. In: Sauerwein WAG, Moss RL (eds) Requirements for boron neutron capture therapy (BNCT) at a nuclear research reactor. European Commission Joint Research Centre, Institute for Energy, Petten, The Netherlands pp 50–61

    Google Scholar 

  40. Huiskamp R, Gavin PR, Coderre JA et al (1996) Brain tolerance in dogs to boron neutron capture therapy with borocaptate sodium (BSH) or boronophenylalanine (BPA). In: Mishima Y (ed) Cancer neutron capture therapy. Plenum Press, New York, pp 591–596

    Google Scholar 

  41. Imahori Y, Ueda S, Ohmori Y et al (1998) Fluorine-18-labeled fluoroborono-phenylalanine PET in patients with glioma. J Nucl Med 39:325–333

    PubMed  CAS  Google Scholar 

  42. Javid M, Brownell GL, Sweet WH (1952) The possible use of neutron-capturing isotopes such as boron 10 in the treatment of neoplasms. II. Computation of the radiation energies and estimates of effects in normal and neoplastic brain. J Clin Invest 31:604–610

    Article  PubMed  CAS  Google Scholar 

  43. Jirtle RL, DeLuca PM, Hinshaw WM et al (1984) Survival of parenchymal hepatocytes irradiated with 14.3 MeV neutrons. Int J Radiat Oncol Biol Phys 10:895–899

    Article  PubMed  CAS  Google Scholar 

  44. Joel DD, Fairchild RG, Laissue JA et al (1990) Boron neutron capture therapy of intracerebral rat gliosarcomas. Proc Natl Acad Sci USA 87:9808–9812

    Article  PubMed  CAS  Google Scholar 

  45. Kiger JL, Kiger WS 3rd, Riley KJ et al (2008) Functional and histological changes in rat lung after boron neutron capture therapy. Radiat Res 170:60–69

    Article  PubMed  CAS  Google Scholar 

  46. Kreimann EL, Itoiz ME, Longhino L et al (2001) Boron neutron capture therapy for the treatment of oral cancer in the hamster cheek pouch model. Cancer Res (Advances in Brief) 61:8638–8642

    CAS  Google Scholar 

  47. Kreimann EL, Miura M, Itoiz ME et al (2003) Biodistribution of a carborane-containing porphyrin as a targeting agent for boron neutron capture therapy of oral cancer in the hamster cheek pouch. Arch Oral Biol 48:223–232

    Article  PubMed  CAS  Google Scholar 

  48. Mansfield C, Hopewell JW, Beynon TD et al (2001) A biological comparison of neutron beams used for BNCT research. In: Hawthorne F et al (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 407–411

    Chapter  Google Scholar 

  49. Mason AJ (2005) A comparison of epithermal neutron beams for BNCT. Ph.D. thesis, University of Birmingham, Birmingham

    Google Scholar 

  50. Mason AJ, Giusti V, Green S et al (2011) Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Int J Radiat Biol 87:1162–1172

    PubMed  CAS  Google Scholar 

  51. Matalka KZ, Bailey MQ, Barth RF et al (1993) Boron neutron capture therapy of intracerebral melanoma using boronophenylalanine as a capture agent. Cancer Res 53:3308–3313

    Article  PubMed  CAS  Google Scholar 

  52. McNally NJ, de Ronde J, Hinchliffe M (1984) The effect of sequential irradiation with X-rays and fast neutrons on the survival of V79 Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 45:301–310

    Article  PubMed  CAS  Google Scholar 

  53. McNally NJ, de Ronde J, Folkard M (1988) Interaction between X-ray and α-particle damage in V79 cells. Int J Radiat Biol Relat Stud Phys Chem Med 53:917–920

    Article  PubMed  CAS  Google Scholar 

  54. Millar WT, Hopewell JW (2007) Effects of very low dose-rate 90Sr/90Y exposure on the acute moist desquamation response of pigskin: comparison based on predictions from dose fractionation studies at high dose rate with incomplete repair. Radiother Oncol 83:187–195

    Article  PubMed  CAS  Google Scholar 

  55. Mishima Y, Ichihashi M, Nakanishi T et al (1983) Cure of malignant melanoma by single thermal neutron capture treatment using melanoma seeking compounds: 10B/melanogenesis interaction to in vitro/in vivo radiobiological analysis to preclinical studies. In: Fairchild RG, Brownell G (eds) Proceedings of the first international symposium on neutron capture therapy. Brookhaven National Laboratory, Upton, pp 355–364

    Google Scholar 

  56. Mishima Y, Imahori Y, Honda C et al (1997) In vivo diagnosis of human melanoma with positron emission tomography using specific melanoma-seeking 18F-DOPA analogue. J Neurooncol 33:163–169

    Article  PubMed  CAS  Google Scholar 

  57. Miura M, Joel DD, Smilowitz HM et al (2001) Biodistribution of copper carboranyltetraphenylporphyrins in rodents bearing an isogeneic or human neoplasm. J Neurooncol 52:111–117

    Article  PubMed  CAS  Google Scholar 

  58. Morgan GR, Mill AJ, Roberts CJ et al (1988) The radiobiology of 24 keV neutrons. Measurement of the relative biological effect free-in-air, survival and cytogenetic analysis of the biological effect at various depths in a polyethylene phantom and modification of the depth-dose profile by boron 10 for V79 Chinese hamster and HeLa cells. Br J Radiol 61:1127–1135

    Article  PubMed  CAS  Google Scholar 

  59. Morris GM, Coderre JA, Hopewell JW et al (1994) Response of rat skin to boron neutron capture therapy with p-boronophenylalanine or borocaptate sodium. Radiother Oncol 32:144–153

    Article  PubMed  CAS  Google Scholar 

  60. Morris GM, Coderre JA, Hopewell JW et al (1994) Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiother Oncol 32:249–255

    Article  PubMed  CAS  Google Scholar 

  61. Morris GM, Coderre JA, Bywaters A et al (1996) Boron neutron-capture irradiation of the rat spinal-cord – histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320

    Article  PubMed  CAS  Google Scholar 

  62. Morris GM, Coderre JA, Hopewell JW et al (1996) Boron neutron capture irradiation of the rat spinal cord: effects of variable doses of borocaptate sodium. Radiother Oncol 39:253–259

    Article  PubMed  CAS  Google Scholar 

  63. Morris GM, Coderre JA, Micca PL et al (1997) Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer 76:1623–1629

    Article  PubMed  CAS  Google Scholar 

  64. Morris GM, Smith DW, Patel H et al (2000) Boron microlocalisation in oral mucosal tissue: implications for boron neutron capture therapy. Br J Cancer 82:1764–1771

    Article  PubMed  CAS  Google Scholar 

  65. Morris GM, Coderre JA, Smith DR (2001) A rat model of oral mucosal response to boron neutron capture therapy. In: Hawthorne F et al (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 1273–1277

    Chapter  Google Scholar 

  66. Morris GM, Coderre JA, Hopewell JW et al (2003) Porphyrin-mediated boron neutron capture therapy: evaluation of the reactions of skin and central nervous system. Int J Radiat Biol 79:149–158

    Article  PubMed  CAS  Google Scholar 

  67. Morris GM, Coderre JA, Micca PL et al (2005) Porphyrin-mediated boron neutron capture therapy: a preclinical evaluation of the response of the oral mucosa. Radiat Res 163:72–78

    Article  PubMed  CAS  Google Scholar 

  68. Nelson JS, Liaw LH, Orenstein A et al (1988) Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst 80:1599–1605

    Article  PubMed  CAS  Google Scholar 

  69. Nievaart VA, Moss RL, Kloosterman JL et al (2006) Design of a rotating facility for extracorporal treatment of an explanted liver with disseminated metastases by boron neutron capture therapy with an epithermal neutron beam. Radiat Res 6:81–88

    Article  Google Scholar 

  70. Ono K, Masunaga S, Suzuki M et al (1999) The combined effect of borono phenylalanine and borocaptate in boron neutron capture therapy for SCCVII tumors in mice. Int J Radiat Oncol Biol Phys 43:431–436

    Article  PubMed  CAS  Google Scholar 

  71. Packer S, Coderre JA, Saraf S et al (1992) Boron neutron capture therapy of anterior chamber melanoma with p-boronophenylalanine. Invest Ophthalmol Vis Sci 33:395–403

    PubMed  CAS  Google Scholar 

  72. Perris A, Pialoglou P, Katsanos AA et al (1986) Biological effectiveness of low energy protons. I. Survival of Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med 50:1093–1101

    Article  PubMed  CAS  Google Scholar 

  73. Phoenix B, Green S, Hill MA et al (2009) Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields. Appl Radiat Isot 67:S318–S320

    Article  PubMed  CAS  Google Scholar 

  74. Pinelli J, Altieri S, Fossati F et al (2001) Operational modalities and effects of BNCT on liver metastases of colon adenocarcinoma. In: Hawthorne F et al (eds) Frontiers in neutron capture therapy. Kluwer Academic/Plenum Publishers, New York, pp 1427–1440

    Chapter  Google Scholar 

  75. Pop LA, Millar WT, van der Plas M et al (2000) Radiation tolerance of rat spinal cord to pulsed dose rate (PDR-) brachytherapy: the impact of differences in temporal dose distribution. Radiother Oncol 55:301–315

    Article  PubMed  CAS  Google Scholar 

  76. Rydin RA, Deutsch OL, Murray BW (1976) The effect of geometry on capillary wall dose for boron neutron capture therapy. Phys Med Biol 21:134–138

    Article  PubMed  CAS  Google Scholar 

  77. Saris SC, Solares GR, Wazer DE et al (1992) Boron neutron capture therapy for murine malignant gliomas. Cancer Res 52:4672–4677

    PubMed  CAS  Google Scholar 

  78. Stone RS (1948) Neutron therapy and specific ionization. Am J Roentgenol Radium Ther 59:771–785

    PubMed  CAS  Google Scholar 

  79. Stragliotto G, Fankhauser H, Gutin PH et al (1995) Biodistribution of boron sulfhydryl for boron neutron capture therapy in patients with intracranial tumors. Neurosurgery 36:285–293

    Article  PubMed  CAS  Google Scholar 

  80. Trivillin VA, Heber EM, Itoiz ME et al (2004) Radiobiology of BNCT mediated by GB-10 and GB-10  +  BPA in experimental oral cancer. Appl Radiat Isot 61:939–945

    Article  PubMed  CAS  Google Scholar 

  81. Trivillin VA, Heber EM, Nigg DW et al (2006) Therapeutic success of boron neutron capture therapy (BNCT) mediated by a chemically non-selective boron agent in an experimental model of oral cancer: a new paradigm in BNCT radiobiology. Radiat Res 166:387–396

    Article  PubMed  CAS  Google Scholar 

  82. Trivillin VA, Heber EM, Rao M et al (2008) Boron neutron capture therapy (BNCT) for the treatment of spontaneous nasal planum squamous cell carcinoma in felines. Radiat Environ Biophys 47:147–155

    Article  PubMed  CAS  Google Scholar 

  83. van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiationinjury to the nervous system. Raven, New York, pp 91–111

    Google Scholar 

  84. Yang W, Barth RF, Carpenter DE et al (1996) Enhanced delivery of boronophenylalanine for neutron capture therapy by means of intracarotid injection and blood–brain barrier disruption. Neurosurgery 38:985–992

    Article  PubMed  CAS  Google Scholar 

  85. Yang W, Barth RF, Rotaru JH et al (1997) Boron neutron capture therapy of brain tumours: enhanced survival following intracarotid injection of sodium borocaptate with or without blood–brain barrier disruption. Int J Radiat Oncol Biol Phys 37:663–672

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Hopewell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hopewell, J.W., Morris, G.M., Schwint, A.E., Coderre, J.A. (2012). Boron Neutron Capture Therapy: Application of Radiobiological Principles. In: Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y. (eds) Neutron Capture Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31334-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31334-9_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31333-2

  • Online ISBN: 978-3-642-31334-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics