Skip to main content

The Physiology of Abiotic Stresses

  • Chapter
  • First Online:
Plant Breeding for Abiotic Stress Tolerance

Abstract

Plants are often exposed to several adverse environmental conditions that potentially generate stress and thus negatively affect their growth and productivity. Understanding the physiological responses of crops to stress conditions is essential to minimizing the deleterious impacts of stress and maximizing productivity. Therefore, there is urgent need for more scientific research to increase our understanding of the physiological behavior of crops in response not only to a specific type of stress but also to multiple interacting stressors, such as water‚ and thermal stresses. The proper assessment of this information may result in important tools for monitoring the most promising genetic material in plant breeding programs. In this chapter, the plant strategies associated with satisfactory growth and yield under abiotic stress conditions are discussed, with emphasis in tropical environments. In addition, the state of the art on the physiology of the major abiotic stresses (drought, salinity, heat, nitrogen and phosphorus deficiencies and aluminum toxicity) and possible strategies to develop cultivars with satisfactory productivity in stressful environments using a physiological approach are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

    Article  PubMed  CAS  Google Scholar 

  • Akhtar MS, Oki Y, Adachi T (2008) Genetic variability in phosphorus acquisition and utilization efficiency from sparin glysoluble P-sources by Brassica cultivars under P-stress environment. J Agron Crop Sci 194:380–392

    Article  CAS  Google Scholar 

  • Arai-Sanoh Y, Ishimaru T, Ohsumi A, Kondo M (2010) Effects of soil temperature on growth and root function in rice. Plant Prod Sci 13:235–242

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol Adv 27:744–752

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Saeed MM, Qureshi MJ (1994) Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environ Exp Bot 34:275–283

    Article  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Barnabás B, Järgen K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Berthon G (1996) Chemical speciation studies in relation to aluminium metabolism and toxicity. Coord Chem Rev 149:241–280

    CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Austr J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plants. Biochim Biophys Acta 1465:140–151

    Article  PubMed  CAS  Google Scholar 

  • Bogard M, Allard V, Brancourt-Hulmel M, Heumez E, Machet J, Jeuffroy M, Gate P, Martre P, Gouis JL (2010) Deviation from the grain protein concentration–grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. J Exp Bot 61:4303–4312

    Article  PubMed  CAS  Google Scholar 

  • Boscolo PRS, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189

    Article  PubMed  CAS  Google Scholar 

  • Brauer EK, Rochon A, Bi Y, Bozzo GG, Rothstein SJ, Shelp BJ (2011) Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant 141:361–372

    Article  PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Chaerle L, Lenk S, Leinonen I, Jones HG, van der Straeten D, Buschnann C (2009) Multi-sensor plant imaging: towards the development of a stress catalogue. Biotechnol J 4:1152–1167

    Article  PubMed  CAS  Google Scholar 

  • Chardon F, Barthélémy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61:2293–2302

    Article  PubMed  CAS  Google Scholar 

  • Chardon F, Noël V, Masclaux-Daubresse C (2012) Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot. doi:10.1093/jxb/err353

    Google Scholar 

  • Chen J, Sucoff EI, Stadelmann EJ (1991) Aluminum and temperature alteration of cell membrane permeability of Quercus rubra. Plant Physiol 96:644–649

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J (2005a) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chinnusamy V, Xiong L, Zhu J-K (2005b) Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Food Product Press, New York

    Google Scholar 

  • Cimato A, Castelli S, Tattini M, Traversi ML (2010) An ecophysiological analysis of salinity tolerance in olive. Environ Exp Bot 68:214–221

    Article  CAS  Google Scholar 

  • Cocking EC, Stone PJ, Davey MR (2006) Intracellular colonization of roots of Arabidopsis and crop plants by Gluconacetobacter diazotrophicus. In Vitro Cell Dev Biol Plant 42:74–82

    Article  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42:122–131

    Article  PubMed  Google Scholar 

  • Coque M, Gallais A (2007) Genetic variation for nitrogen remobilization and postsilking nitrogen uptake in maize recombinant inbred lines: heritabilities and correlations among traits. Crop Sci 47:1787–1796

    Article  CAS  Google Scholar 

  • Cummings SP (2005) The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems. Environ Microbiol 1:1–10

    Google Scholar 

  • DaMatta FM (2003) Drought as a multidimensional stress affecting photosynthesis in tropical tree crops. In: Hemantaranjan E (ed) Advances in plant physiology, 5th edn. Scientific Publishers, Jodhpur

    Google Scholar 

  • DaMatta FM, Grandis A, Arenque BC, Buckeridge MS (2010) Impacts of climate changes on crop physiology and food quality. Food Res Int 43:1814–1823

    Article  Google Scholar 

  • Dancer J, Veith R, Feil R, Komor E, Stitt M (1990) Independent changes of inorganic pyrophosphate and the ATP/ADP or UTP/UDP ratios in plant suspension cultures. Plant Sci 66:59–63

    Article  CAS  Google Scholar 

  • Darkó E, Ambrus H, Stefanovits-Banyai E, Fodor J, Bakos F, Barnabás B (2004) Aluminum toxicity, Al tolerance and oxidative stress in Al-sensitive wheat genotype and in Al-tolerant lines developed by in vitro microspore selection. Plant Sci 166:583–591

    Article  CAS  Google Scholar 

  • Deb Roy B, Deb B, Sharma GD (2010) Role of acetic acid bacteria in biological nitrogen fixation. Biofrontiers 1:47–57

    Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC (1989) Phosphate starvation inducible ‘bypasses’ of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E (1998) Growth and sugar storage in sugarcane grown at temperature below and above optimum. J Plant Physiol 153:593–602

    Article  CAS  Google Scholar 

  • Ehleringer JR, Hall AE, Farquhar GD (1993) Stable isotopes and plant carbon-water relations. Academic Press, San Diego

    Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Italy

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick K (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Feng LL, Wang K, Li Y, Tan YP, Kong J, Li H, Li YS, Zhu YG (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field grown crops of wheat. Plant Cell Environ 34:67–78

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Foulkes MJ, Hawkesford MJ, Barraclough PB, Holdsworth MJ, Kerr S, Kightley S, Shewry PR (2009) Identifying traits to improve the nitrogen economy of wheat: recent advances and future prospects. Field Crops Res 114:329–342

    Article  Google Scholar 

  • Foyer C, Noctor G, Hodges M (2011) Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 62:1467–1482

    Article  PubMed  CAS  Google Scholar 

  • Garnett T, Conn V, Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ 32:1272–1283

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Hartwig I, Oliveira AC, Carvalho FIF, Bertan I, Silva JAG, Schmidt DAM, Valério IP, Maia LC, Fonseca DAR, Reis CES (2007) Mecanismos associados à tolerância ao alumínio em plantas. Semina: Ciênc Agr 28:219–228

    Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Gouis JL, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    Article  PubMed  CAS  Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2007) Summary for policymakers of the first volume of “Climate Change 2007”. Working Group I of the intergovernmental panel on climate change, Geneva

    Google Scholar 

  • Ismail AM, Hall AE (1998) Positive and potential negative effects of heat-tolerance genes in cowpea lines. Crop Sci 38:381–390

    Article  Google Scholar 

  • Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39:1762–1768

    Article  Google Scholar 

  • Jacoby RP, Taylor NL, Millar H (2011) The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci 16:614–623

    Article  PubMed  CAS  Google Scholar 

  • Jansen S, Broadley MR, Robbrecht W, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68:235–269

    Article  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis ARJR (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46:22–530

    Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:75–195

    Article  CAS  Google Scholar 

  • Kouas S, Debe A, Slatni T, Labidi N, Drevon JJ, Abdell C (2009) Root proliferation, proton efflux, and acid phosphatase activity in common bean (Phaseolus vulgaris) under phosphorus shortage. J Plant Biol 52:395–402

    Article  Google Scholar 

  • Läunchli A, Epstein E (1990) Plant responses to saline and sodic conditions. In: Tanji KK (ed) Agricultural salinity assessment and management. American Society of Civil Engineers, New York

    Google Scholar 

  • Lima ALS, DaMatta FM, Pinheiro HA, Totola MR, Loureiro ME (2002) Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environ Exp Bot 47:239–247

    Article  CAS  Google Scholar 

  • Lindon FC, Ramalho JC, Barreiro MG, Lauriano JA (1999) Modulation of photosystem 2 reactions mediated by aluminium toxicity in Zea mays. Photosynthetica 34:151–156

    Article  Google Scholar 

  • Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot 26:551–561

    Google Scholar 

  • Lu Z, Zeiger E (1994) Selection of higher yield and heat resistance in pima cotton has caused genetically determined changes in stomatal conductance. Physiol Plant 92:273–278

    Article  CAS  Google Scholar 

  • Lu Z, Chen J, Percy RG, Sharifi MR, Rundel PW, Zeiger E (1996) Genetic variation in carbon isotope discrimination and its relation to stomatal conductance in pima cotton (Gossypium barbadense). Aust J Plant Physiol 23:127–132

    Article  CAS  Google Scholar 

  • Ludlow MM, Santamaria JM, Fukai S (1990) Contribution of osmotic adjustment to grain yield in Sorghum bicolor (L.) Moench under water limited conditions. II. Water stress after anthesis. Aust J Agric Res 41:67–78

    Article  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Nagao S, Sato K, Ito H, Furukawa J, Takeda K (2004) Molecular mapping of a gene responsible for Al-activated secretion of citrate in barley. J Exp Bot 55:1335–1341

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR (2010) Understanding how plants cope with acid soils. Funct Plant Biol 37:3–6

    Article  Google Scholar 

  • Magalhães JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Marcum KB (1998) Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci 38:1214–1218

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Boston

    Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157

    Article  PubMed  Google Scholar 

  • Miyasaka SC, Hue NV, Dunn MA (2006) Aluminun. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press, New York

    Google Scholar 

  • Moinuddin KR (2004) Osmotic adjustment in chickpea in relation to seed yield and yield parameters. Crop Sci 44:449–455

    Google Scholar 

  • Moller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12:534–540

    Article  PubMed  CAS  Google Scholar 

  • Monneveux P, Sheshshayee MS, Akhter J, Ribaut JM (2007) Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci 173:390–396

    Article  CAS  Google Scholar 

  • Morgan JM (1992) Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Aust J Plant Physiol 19:67–76

    Article  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Sirault XRR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61:3499–3507

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Fernie AR, Stitt M (2010) Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol Plant 3:973–996

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Baluska F, Matsumoto H (2009) Aluminium stress signaling in plants. Plant Signal Behav 4:592–597

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann App Biol 147:211–226

    Article  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index and water use of wheat. J Aust Inst Agric Sci 43:117–120

    Google Scholar 

  • Passioura JB (1997) Drought and drought tolerance. In: Belhassen E (ed) Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Peet MM, Willits DH (1998) The effect of night temperature on greenhouse grown tomato yields in warm climate. Agric Forest Meteorol 92:191–202

    Article  Google Scholar 

  • Peixoto PHP, Cambraia J, Sant’anna R, Mosquim PR, Moreira MA (2001) Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. J Plant Nutr 24:1061–1070

    Article  CAS  Google Scholar 

  • Peixoto PHP, Pimenta DL, Cambraia J (2007) Alterações morfológicas e acúmulo de compostos fenólicos em plantas de sorgo sob estresse de alumínio. Bragantia 66:17–25

    Article  CAS  Google Scholar 

  • Perrotta C, Treglia AS, Mita G, Giangrande E, Rampino P, Ronga G, Spano G, Marmiroli N (1998) Analysis of mRNAs from ripening wheat seeds: the effect of high temperature. J Cereal Sci 27:127–132

    Article  CAS  Google Scholar 

  • Piñeros MA, Shaff JE, Manslank HS, Alves VMC, Kochian LV (2005) Aluminum resistance in maize cannot be solely explained by root organic acid exudation. A comparative physiological study. Plant Physiol 137:231–241

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with root depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  PubMed  Google Scholar 

  • Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel-Dekker, New York

    Google Scholar 

  • Posch S, Bennett LT (2009) Photosynthesis, photochemistry and antioxidative defence in response to two drought severities and with re-watering in Allocasuarina luehmannii. Plant Biol 11:83–93

    Article  PubMed  CAS  Google Scholar 

  • Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2002) Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol 8:710–721

    Article  Google Scholar 

  • Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high‐affinity NO3 transporter and of an H+‐ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot 54:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Article  Google Scholar 

  • Rengel Z, Zhang W (2003) Role of dynamics of intracellular calcium in aluminium-toxicity syndrome. New Phytol 159:295–314

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soils—a review. Plant Cell Tissue Organ Cult 75:189–207

    Article  CAS  Google Scholar 

  • Sambatti JB, Caylor KK (2007) When is breeding for drought tolerance optimal if drought is random? New Phytol 175:70–80

    Article  PubMed  Google Scholar 

  • Sanyal SK, DeDatta SK (1991) Chemistry of phosphorus transformations in soil. Adv Soil Sci 16:1–120

    Article  CAS  Google Scholar 

  • Sato S, Peet MM, Thomas JF (2000) Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill) under chronic, mild heat stress. Plant Cell Environ 23:719–726

    Article  Google Scholar 

  • Sato S, Kamiyamam M, Iwata T, Makita N, Furukawa H, Keda I (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Olson SM, Howe TK, Stoffella PJ, Bartz JA, Bryan HH (1995) ‘Equinox’ heat-tolerant hybrid tomato. Hortic Sci 30:647–648

    Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 23:543–552

    Article  Google Scholar 

  • Singsaas EL, Laporte MM, Shi JZ, Monson RK, Bowling DR, Johnson K, Lerdau M, Jasentuliyana A, Sharkey TD (1999) Leaf temperature fluctuation affects isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol 19:917–924

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1,3-β-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids, metabolism and membranes. Science 252:80–87

    Article  PubMed  CAS  Google Scholar 

  • Sun W, van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Takeda K, Ohnishi T (1991) Light-induced anthocyanin reduces the extent of damage to DNA in UV-irradiated Centaura cyanus cells in culture. Plant Cell Physiol 32:541–547

    CAS  Google Scholar 

  • Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321

    Article  Google Scholar 

  • Tardieu F (2005) Plant tolerance to water deficit: physical limits and possibilities for progress. Comptes Rendus GeoSci 337:57–67

    Article  Google Scholar 

  • Taylor GJ, Mcdonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

    Article  PubMed  CAS  Google Scholar 

  • Tester N, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:1–25

    Article  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1996) Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol 112:343–351

    Article  PubMed  CAS  Google Scholar 

  • Thiaw S, Hall AE (2004) Comparison of selection for either leaf-electrolyte-leakage or pod set in enhancing heat tolerance and grain yield of cowpea. Field Crops Res 86:239–253

    Article  Google Scholar 

  • Thomson WW, Faraday CD, Oros JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot 89:783–789

    Article  PubMed  CAS  Google Scholar 

  • Triboi E, Triboi-Blondel A (2002) Productivity and grain or seed composition: a new approach to an old problem. Eur J Agron 16:163–186

    Article  Google Scholar 

  • Tripathy JN, Zhang J, Robin S, Nguyen TT, Nguyen HT (2000) QTLs for cell membrane stability mapped in rice under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  PubMed  CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yañez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminium toxicity and resistance in higher plants. Braz J Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  • Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141

    Article  CAS  Google Scholar 

  • Wang D, Luthe DS (2003) Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol 133:319–327

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    Article  CAS  Google Scholar 

  • Wardlaw IF, Blumenthal C, Larroque O, Wrigley CW (2002) Contrasting effects of chronic heat stress and heat shock on kernel weight and flour quality in wheat. Funct Plant Biol 29:25–34

    Article  Google Scholar 

  • Weaich K, Briston KL, Cass A (1996) Modeling preemergent maize shoot growth. II. High temperature stress conditions. Agron J 88:398–403

    Google Scholar 

  • Wilhelm EP, Mullen RE, Keeling PL, Singletary GW (1999) Heat stress during grain filling in maize: effects on kernel growth and metabolism. Crop Sci 39:1733–1741

    Article  CAS  Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958

    Article  PubMed  CAS  Google Scholar 

  • Xue YJ, Tao L, Yang ZM (2008) Aluminum-induced cell wall peroxidase activity and lignin synthesis are differentially regulated by jasmonate and nitric oxide. J Agric Food Chem 56:9676–9684

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125:199–208

    Article  PubMed  CAS  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS (2004) Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol 135:1621–1629

    Article  PubMed  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55:485–495

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Gibon Y, Gur A, Chen C, Lepak N, Hoehne M, Zhang Z, Kroon D, Tschoep H, Stitt M, Buckler E (2010) Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population. Plant Physiol 154:1753–1765

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Fu J, Liao H, He Y, Nian H, Hu Y, Qiu L, Dong Y, Yan X (2004) Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull 49:1611–1620

    CAS  Google Scholar 

  • Zhu X, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio M. DaMatta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cavatte, P.C., Martins, S.C.V., Morais, L.E., Silva, P.E.M., DaMatta, F.M. (2012). The Physiology of Abiotic Stresses. In: Fritsche-Neto, R., Borém, A. (eds) Plant Breeding for Abiotic Stress Tolerance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30553-5_3

Download citation

Publish with us

Policies and ethics