Skip to main content

The Family Acetobacteraceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Acetobacteraceae is taxonomically included in the order Rhodospirillales of the class Alphaproteobacteria, and 32 genera are validly described. The genera are basically classified into two groups, an acetous group and an acidophilic group, in the light of application, ecology, and phylogeny. The acetous group comprises genera in acetic acid bacteria like Acetobacter, Gluconacetobacter, Gluconobacter, Asaia, Granulibacter, and Komagataeibacter. The acidophilic group consists of acidophilic and neutrophilic genera like Acidiphilium and Roseomonas. In the 1960s, taxonomy of acetic acid bacteria was significantly affected by the chemotaxonomic study with G+C content of DNA, quinone systems, cellular fatty acid composition, and DNADNA similarity. Further, data of phylogenetic analysis based on 16S rRNA gene sequences have had a profound impact on the systematics of acetic acid bacteria and other bacteria over all. Membrane-bound dehydrogenases are responsible for the oxidation of alcohols and sugars in acetic acid bacteria. The dehydrogenases are located in the periplasmic side of the cytoplasmic membrane of the bacteria. The direct electron acceptor of the dehydrogenases is ubiquinone in the respiratory chain of the acetic acid bacteria. Production of acetic acid from ethanol and of D-gluconate, 2-keto-D-gluconate, 5-keto-D-gluconate, and 2,5-diketo-D-gluconate from D-glucose is due to the membrane-bound dehydrogenases. Acetic acid bacteria are widely distributed in alcoholic and acidic environments, and they are isolated from vinegar, wine, beer, sake, cider, fermented foods, fruits, flowers, and other alcoholic materials. Asaia strains are isolated from flowers and even from mosquitoes and other insects. Granulibacter is known for its pathogenicity for humans. Acetic acid bacteria are widely used for production of vinegar. D-Gluconic acid and keto-D-gluconic acids are produced from D-glucose by Gluconobacter strains, which are used in the food, pharmaceutical, and chemical industries. L-Sorbose is produced from sorbitol by Gluconobacter strains, which is further converted to 2-keto-L-gulonic acid as a penultimate intermediate in the industrial production of vitamin C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie M (1962) Association de Candida mycoderma Rees Lodder et d’Acetobacter xylinum Brown dans la fermentation acétique des infusions de thé. Ann Sci Nat Bot Biol Veg 2:765–800

    Google Scholar 

  • Abdel-Haq N, Savaşan S, Davis M, Asmar BI, Painter T, Salimnia H (2009) Asaia lannaensis bloodstream infection in a child with cancer and bone marrow transplantation. J Med Microbiol 58:974–976

    Article  PubMed  Google Scholar 

  • Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M (1978) Purification and characterization of particulate alcohol dehydrogenase from Gluconobacter suboxydans. Agric Biol Chem 42:2045–2056

    Article  CAS  Google Scholar 

  • Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K (2001) Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: A versatile enzyme for oxidative fermentation of various ketoses. Biosci Biotechnol Biochem 65:2755–2762

    Article  CAS  PubMed  Google Scholar 

  • Adams MR (1998) Vinegar. In: Wood BJB (ed) Microbiology of fermented foods, vol 1, 2nd edn. Blackie Academic & Professional, London, pp 1–44

    Chapter  Google Scholar 

  • Aida K, Yamada Y (1964) A new enzyme, 5-ketofructose reductase. Agric Biol Chem 28:74–75

    Article  CAS  Google Scholar 

  • Alarico S, Rainey FA, Empadinhas N, Schumann P, Nobre MF, Da Costa MS (2002) Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 25:198–206

    Article  CAS  PubMed  Google Scholar 

  • Alauzet C, Teyssier C, Jumas-Bilak E, Gouby A, Chiron R, Rabaud C, Counil F, Lozniewski A, Marchandin H (2010) Gluconobacter as well as Asaia species, newly emerging opportunistic human pathogens among acetic acid bacteria. J Clin Microbiol 48:3935–3942

    Article  PubMed Central  PubMed  Google Scholar 

  • Alcalá L, Vasallo FJ, Cercenado E, García-Garrote F, Rodríquez-Créixems M, Bouza E (1997) Catheter-related bacteremia due to Roseomonas gilardii sp. nov. J Clin Microbiol 35:2712

    PubMed Central  PubMed  Google Scholar 

  • Ameyama M (1975) Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int J Syst Bacteriol 25:365–370

    Article  Google Scholar 

  • Ameyama M, Kondo K (1967) Carbohydrate metabolism by acetic acid bacteria Part VI. Characteristics of the intermediate type strains. Agric Biol Chem 31:724–737

    Article  CAS  Google Scholar 

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1981) D-Fructose dehydrogenase of Gluconobacter industrius: purification, characterization and application to enzyme microdetermination of D-fructose. J Bacteriol 142:814–823

    Google Scholar 

  • Ameyama M, Matsushita K, Shinagawa E, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49:1001–1010

    Article  CAS  Google Scholar 

  • André J (1961) L’alimentation et la cuisine à Rome. Librairie C. Klincksieek, Paris

    Google Scholar 

  • Asai T (1934) Taxonomic study of acetic acid bacteria and allied oxidative bacteria in fruits and a new classification of oxidative bacteria. Nippon Nogeikagaku Kaishi 10:621–629 (in Japanese)

    Article  CAS  Google Scholar 

  • Asai T (1935) Taxonomic study of acetic acid bacteria and allied oxidative bacteria in fruits and a new classification of oxidative bacteria. Nippon Nogeikagaku Kaishi 11:674–708 (in Japanese)

    Article  Google Scholar 

  • Asai T (1968) Acetic acid bacteria: Classification and biochemical activities. University Tokyo Press, Tokyo

    Google Scholar 

  • Asai T, Shoda K (1958) The taxonomy of Acetobacter and allied oxidative bacteria. J Gen Appl Microbiol 4:289–311

    Article  Google Scholar 

  • Asai T, Iizuka H, Komagata K (1964) The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10:95–126

    Article  Google Scholar 

  • Ashbolt NJ, Inkerman PA (1990) Acetic acid bacteria biota of the pink sugar cane mealybug, Saccharococcus sacchari, and its environs. Appl Environ Microbiol 56:707–712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auling G, Busse HJ, Hahn M, Hennecke H, Kroppenstedt RM, Probst A, Stackebrandt E (1988) Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxydobacteria. Syst Appl Microbiol 10:264–272

    Article  Google Scholar 

  • Avigad G, Englard S, Pifko S (1966) 5-Keto-D-fructose IV. A specific reduced nicotinamide adenine dinucleotide phosphate-linked reductase from Gluconobacter cerinus. J Biol Chem 241:373–378

    CAS  PubMed  Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K and other authors (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783

    Google Scholar 

  • Baik KS, Park SC, Choe HN, Kim SN, Moon JH, Seong CN (2012) Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 62:3024–3029

    Article  CAS  PubMed  Google Scholar 

  • Bard JD, Deville JG, Summanen PH, Lewinski MA (2010) Roseomonas mucosa isolated from bloodstream of pediatric patient. J Clin Microbiol 48:3027–3029

    Article  PubMed Central  PubMed  Google Scholar 

  • Bassetti M, Pecori D, Sartor A, Londero A, Villa G, Cadeo B, Brillo F, Bongiorno D, Campanile F, Stefani S (2013) First report of endocarditis by Gluconobacter spp. in a patient with history of intravenous-drug abuse. J Infect 66:258–287

    Article  Google Scholar 

  • Bassir O (1968) Some Nigerian wines. West African J Biol Appl Sci 5:67–85

    Google Scholar 

  • Behrens J (1896) Die Infektionskrankheiten des Weines. Zentralbl Bakteriol Parasitenk Infektionskrankh Hyg 2 Abt 2:213–231

    Google Scholar 

  • Beijerinck MW (1898) Ueber die Arten der Essigbakterien. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 4:209–216

    Google Scholar 

  • Beijerinck MW, Folpmers T (1916) Formation of pyruvic acid from malic acid by microbes. Verslag van de Gewone Vergaderingen der Wis- en Natuurkundige Afdeeling der Koninklijke Akademie van Wetenschappen te Amsterdam 18:1198–1200

    Google Scholar 

  • Belova SE, Pankratov TA, Detkova EN, Kaparullina EN, Dedysh SN (2009) Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int J Syst Evol Microbiol 59:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Bernardo EB, Neilan BA, Couperwhite I (1998) Characterization, differentiation and identification of wild-type cellulose-synthesizing Acetobacter strains involved in Nata de Coco production. Syst Appl Microbiol 21:599–608

    Article  CAS  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J and other authors (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genom 10:450

    Google Scholar 

  • Bibashi E, Sofianou D, Kontopoulou K, Mitsopoulos E, Kokolina E (2000) Peritonitis due to Roseomonas fauriae in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 38:456–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bitter F, Reynaud-Gaubert M, Thomas P, Boniface S, Raoult D, Rolain J-M (2008) Acetobacter indonesiensis pneumonia after lung transplant. Emerg Infect Dis 14:997–998

    Article  Google Scholar 

  • Blackwood AC, Guimberteau G, Peynaud E (1969) Sur les bactéries acétiques isolées de raisins C. R. Hebd Séances. Acad Sci Série D 269:802–804

    CAS  Google Scholar 

  • Boesch C, Trček J, Sievers M, Teuber M (1998) Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21:220–229

    Article  CAS  PubMed  Google Scholar 

  • Boldareva EN, Tourova TP, Kolganova TV, Moskalenko AA, Makhneva ZK, Gorlenko VM (2009) Roseococcus suduntuyensis sp. nov., a new aerobic bacteriochlorophyll a-containing bacterium isolated from a low-mineralized soda lake of Eastern Siberia. Microbiology 78:92–101

    Article  CAS  Google Scholar 

  • Boudrant J (1990) Microbial processes for ascorbic acid biosynthesis: a review. Enzyme Microb Technol 12:322–329

    Article  CAS  PubMed  Google Scholar 

  • Boyd MA, Laurens MB, Florella FD, Mendley SP (2012) Peritonitis and technical failure caused by Roseomonas mucosa in an adolescent infected with HIV on continuous cycling peritoneal dialysis. J Clin Microbiol 50:3801–3804

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AJ (1886) On an acetic ferment which forms cellulose. J Chem Soc 49:432–439

    Google Scholar 

  • Buchanan RE (1970) Review of Asai’s 1934–35 contributions to the taxonomy of the acetic acid bacteria. Int J Syst Bacteriol 20:115–117

    Article  Google Scholar 

  • Buchanan RE, Holt JG, Lessel EF Jr (1966) Comment. In: Buchanan RE, Holt JG, Lessel EF Jr (eds) Index Bergeyana. The Williams & Wilkins Company, Baltimore. p. 4

    Google Scholar 

  • Bulygina ES, Gulikova OM, Dikanskaya EM, Netrusov AI, Tourova TP, Chumakov KM (1992) Taxonomic studies of the genera Acidomonas, Acetobacter and Gluconobacter by 5S ribosomal RNA sequencing. J Gen Microbiol 138:2283–2286

    Article  CAS  Google Scholar 

  • Caesar W (1990) Von kombu zu kombucha? Deutsche Apotheker Zeitung 130:2267

    Google Scholar 

  • Campbell LK, Baker DE, Campbell RK (2000) Miglitol: assessment of its role in the treatment of patients with diabetes mellitus. Ann Pharmacother 34:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Campbell-Platt G (1987) Fermented Foods of the World. A dictionary and Guide. Butterworths, London

    Google Scholar 

  • Carr JG, Shimwell JL (1960) Pigment-producing strains of Acetobacter aceti. Nature 186:331–332

    Article  CAS  PubMed  Google Scholar 

  • Castro C, Cleenwerck I, Trček J, Zuluaga R, De Vos P, Caro G, Aguirre R, Putaux J-L, Gañán P (2013) Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose producing acetic acid bacteria isolated from vinegar. Int J Syst Evol Microbiol 63:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Cavalcante VA, Döbreiner J (1988) A new acid-tolerant nitrogen fixing bacterium associated with sugar cane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PloS Genet 7:e1002272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chase JM, Holland SM, Greenberg DE, Marshall-Batty K, Zelazny AM, Church JA (2012) Acidomonas methanolica-associated necrotizing lymphadenitis in a patient with chronic granulomatous disease. J Clin Immunol 32:1193–1196

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheldelin VH (1961) Metabolic Pathways of Microorganisms. Willey, New York

    Book  Google Scholar 

  • Chen K-J, Lai C–C, Kuo Y–H, Wu W–C, Chen T-L (2009) Chronic postoperative Roseomonas endophthalmitis. J Clin Microbiol 47:266–267

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen JW, Gan HM, Yin W-F, Chan K-G (2012) Genome sequence of Roseomonas sp. strain B5, a quorum-quenching N-acylhomoserine lactone-degrading bacterium isolated from Malaysian tropical soil. J Bacteriol 194:6681–6682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon N, Alma A, Favia G, Daffonchio D, Bandi C (2010) Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76:7444–7450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claret C, Salmon JM, Romieu C, Bories A (1994) Physiology of Gluconobacter oxydans during dihydroxyacetone production from glycerol. Appl Environ Microbiol 41:359–365

    CAS  Google Scholar 

  • Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J (2002) Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558

    CAS  PubMed  Google Scholar 

  • Cleenwerck I, Camu N, Engelbeen K, De Winter T, Vandemeulebroecke K, De Vos P, De Vuyst L (2007) Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. Int J Syst Evol Microbiol 57:1647–1652

    Article  CAS  PubMed  Google Scholar 

  • Cleenwerck I, Gonzalez Á, Camu N, Engelbeen K, De Vos P, De Vuyst L (2008) Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Int J Syst Evol Microbiol 58:2180–2185

    Article  CAS  PubMed  Google Scholar 

  • Cleenwerck I, De Wachter M, González Á, De Vuyst L, De Vos P (2009) Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. Int J Syst Evol Microbiol 59:1771–1786

    Article  CAS  PubMed  Google Scholar 

  • Cleenwerck I, De Vos P, De Vuyst L (2010) Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. Int J Syst Evol Microbiol 60:2277–2283

    Article  PubMed  Google Scholar 

  • Conner HA, Allgeier R (1976) Vinegar: Its History and Development. Advances in Applied Microbiology 20:81–133

    Google Scholar 

  • Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73:3470–3479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crotti E, Pajoro M, Damiani C, Ricci I, Negri I, Rizzi A, Clementi E, Raddadi N, Scuppa P, Marzorati M, Pasqualini L, Bandi C, Sacchi L, Favia G, Alma A, Daffonchio D (2008) Asaia, a transformable bacterium, associated with Scaphoideus titanus, the vector of “Flavescence dorée”. Bull Insectolo 61:219–220

    Google Scholar 

  • Crotti E, Damiani C, Pajoro M, Gonella E, Rizzi A, Ricci I, Negri I, Scuppa P, Rossi P, Ballarini P, Raddadi N, Marzorati M, Sacchi L, Clementi E, Genchi M, Mandrioli M, Bandi C, Favia G, Alma A, Daffonchio D (2009) Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ Microbiol 11:3252–3264

    Article  CAS  PubMed  Google Scholar 

  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Esposito F, Bandi C, Daffonchio D, Favia G (2008) Paternal transmission of symbiotic bacteria in malaria vector. Curr Biol 18:R1087–R1088

    Article  CAS  PubMed  Google Scholar 

  • Damiani C, Ricci I, Crotti E, Rossi P, Rizzi A, Scuppa P, Capone A, Ulissi U, Epis S, Genchi M, Sagnon N, Faye I, Kang A, Chouaia B, Whitehorn C, Moussa GW, Mandrioli M, Esposito F, Sacchi L, Bandi C, Daffonchio D, Favia G (2010) Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microbiol Ecol 60:644–654

    Article  Google Scholar 

  • De Ley J (1960) Comparative carbohydrate metabolism and localization of enzymes in Pseudomonas and related micro-organisms. J Appl Bacteriol 23:400–441

    Article  Google Scholar 

  • De Ley J (1961) Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J Gen Microbiol 24:31–50

    Article  Google Scholar 

  • De Ley J, Frateur J (1970) The status of the generic name Gluconobacter. Int J Syst Bacteriol 20:83–95

    Article  Google Scholar 

  • De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto) gluconate synthesis. J Chem Technol Biotechnol 67:376–380

    Article  Google Scholar 

  • Dellaglio F, Cleenwerck I, Felis GE, Engelbeen K, Janssens D, Marzotto M (2005) Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Int J Syst Evol Microbiol 55:2365–2370

    Article  CAS  PubMed  Google Scholar 

  • Deppenmeier U, Hoffmeister M, Prust C (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl Microbiol Biotechnol 60:233–242

    Article  CAS  PubMed  Google Scholar 

  • Dinslage E, Ludorff W (1927) Der “indische Teepilz”. Zeitschrift Untersuchungen de Lebensmittel 53:458–467

    Google Scholar 

  • Du Toit WJ, Lambrechts MG (2002) The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64

    Article  CAS  PubMed  Google Scholar 

  • Dufresne C, Farnworth F (2000) Tea, Kombucha, and health: a review. Food Res Int 33:409–421

    Article  CAS  Google Scholar 

  • Dupuy P (1957) Les Acetobacter du vin: Identification de quelques souches. Ann Technol 2:217–233

    Google Scholar 

  • Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 56:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Gachhui R (2007) Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol 57:353–357

    Article  CAS  PubMed  Google Scholar 

  • Entani E, Ohmori S, Masai H, Suzuki K-I (1985) Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490

    Article  CAS  Google Scholar 

  • Epis S, Gaibani P, Ulissi U, Chouaia B, Ricci I, Damiani C, Sambri V, Castelli F, Buelli F, Daffonchio D, Bandi C, Favia G (2012) Do mosquito-associated bacteria of the genus Asaia circulate in humans? Eur J Clin Microbiol Infect Dis 31:1137–1140

    Article  CAS  PubMed  Google Scholar 

  • Faparusi SI (1973) Origin of initial microflora of palm wine from oil palm trees (Elaeis guineensis). J Appl Bacteriol 36:559–565

    Article  Google Scholar 

  • Faparusi SI (1974) Microorganisms from oil palm tree (Elaeis guineensis) tap holes. J Food Sci 39:755–757

    Article  Google Scholar 

  • Favia G, Ricci I, Damian C, Raddadi N, Marzorati M, Ricci A, Urso R, Brusetti L, Borin S, Mora D, Scuppa P, Pasqualini L, Clementi E, Genchi M, Corona S, Negri I, Grandi G, Alma A, Kramer L, Esposito F, Bandi C, Sacchi L, Daffonchio D (2007) Bacteria of the genus Asaia stably associated with Anopheles stephensi, an Asian malarial mosquito vector. Proc Natl Acad Sci USA 104:9047–9051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franke IH, Fegan M, Hayward C, Leonard G, Stackebrandt E, Sly LI (1999) Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49:1681–1693

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Ramírez LE, Bustillos-Cristales R, Tapía-Hernández A, Jiménez-Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51:1305–1314

    Article  PubMed  Google Scholar 

  • Fuhrmann F (1905) Morphologisch-biologische Untersuchungen über ein neues Essigsäure bildendes Bakterium. Botanisches Centralblatt Beihefte Abt 1(19):1–33

    Google Scholar 

  • Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M, Fukuyama M (2008) Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 54:167–171

    Article  CAS  PubMed  Google Scholar 

  • Gallego V, García MT, Sánchez-Porro C, Ventosa A (2006) Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2291–2295

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhou J, Liu J, Du G, Chen J (2012) Draft genome sequence of Gluconobacter oxydans WSH-003, a strain that is extremely tolerant of saccharides and alditols. J Bacteriol 194:4455–4456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Class I. Alphaproteobacteria class. nov. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 2, The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York

    Google Scholar 

  • Ge X, Zhao Y, Hou W, Zhang W, Chen W, Wang J, Zhao N, Lin J, Wang W and other authors (2013) Complete genome sequence of the industrial strain Gluconobacter oxydans H24. Genome Announc 1:e00003–e00013

    Google Scholar 

  • Gilardi G, Faur YC (1984) Pseudomonas mesophilica and an unnamed taxon, clinical isolates of pink-pigmented oxidative bacteria. J Clin Microbiol 20:626–629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillis M, De Ley J (1980) Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27

    Article  CAS  Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Döbereiner J, De Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Article  Google Scholar 

  • Gosselé F, Swings J, Kersters K, De Ley J (1983a) Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. Int J Syst Bacteriol 33:65–81

    Article  Google Scholar 

  • Gosselé F, Swings J, Kersters K, Pauwels P, De Ley J (1983b) Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898 215. Syst Appl Microbiol 4:338–368

    Article  PubMed  Google Scholar 

  • Gouby A, Teyssier C, Vecina F, Marchandin H, Granolleraqs C, Zorgniotti I, Jumas-Bilak E (2007) Acetobacter cibinongensis bacteremia in human. Emerg Infect Dis 13:784–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg DE, Ding L, Zelazny AM, Stock F, Wong A, Anderson VL, Miller G, Kleiner DE, Tenorio AR, Brinster L, Dorward DW, Murray PR, Holland SM (2006a) A novel bacterium associated with lymphadenitis in a patient with chronic granulomatous disease. PloS Pathog 2:e28 (0260–0267)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greenberg DE, Porcella SF, Stock F, Wong A, Conville PS, Murray PR, Holland SM, Zelazny AM (2006b) Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56:2609–2616

    Article  CAS  PubMed  Google Scholar 

  • Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ III, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg DE, Shoffner AR, Zelazny AM, Fenster ME, Zarember KA, Stock F, Ding L, Marshall-Batty KR, Wasserman RL, Welch DF, Kanakabadi K, Sturdevant DE, Virtaneva K, Porcella SF, Murray PR, Malech HL, Holland SM (2010) Recurrent Granulibacter bethesdensis infections and chronic granulomatous disease. Emerg Infect Dis 16:1341–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greene RA, Breazeale EL (1952) Cloudiness of tequila produced by Acetobacter. Am Brew 85:41–52

    Google Scholar 

  • Greenwalt CJ, Steinkraus KH, Ledford RA (2000) Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Proect 63:976–981

    CAS  Google Scholar 

  • Guay R, Silver M (1975) Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO, Levett PN (2003) Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp. nov. and Roseomonas gilardii subsp. rosea subsp. nov. Am J Clin Pathol 120:256–264

    Article  PubMed  Google Scholar 

  • Hansen EC (1894) Undersogelser over Eddikesyrerlaktenner. (Anden afhandling). Medd Carlsberg Lab 4:265–327

    Google Scholar 

  • Hansen CE, del Olmo M, Burri C (1998) Enzyme activities in cocoa beans during fermentation. J Sci Food Agric 77:273–281

    Article  CAS  Google Scholar 

  • Harashima K, Shiba T, Totsuka T, Simidu U, Taga N (1978) Occurrence of bacteriochlorophyll a in a strain of an aerobic heterotrophic bacterium. Agric Biol Chem 42:1627–1628

    Article  CAS  Google Scholar 

  • Harrison AP Jr (1981) Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327–332

    Article  Google Scholar 

  • Harrison AP Jr (1983) Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. Int J Syst Bacteriol 33:211–217

    Article  Google Scholar 

  • Hauge JG, King TE, Cheldelin VH (1955) Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter suboxydans. J Biol Chem 214:11–26

    CAS  PubMed  Google Scholar 

  • Hermann W (1928a) Über die sogenannte “Kombucha” I. Biochem Z 192:176–187

    CAS  Google Scholar 

  • Hermann W (1928b) Über die sogenannte “Kombucha” II. Biochem Z 192:188–199

    CAS  Google Scholar 

  • Hesseltine CW (1965) A millennium of fungi, food, and fermentation. Mycologia 57:149–197

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Nagashima KVP, Matsuura K, Shimada K, Takaichi S, Wakao N, Katayama Y (1998) Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Hiraishi A, Matsuzawa Y, Kanbe T, Wakao N (2000) Acidisphaera rubrifaciens gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium isolated from acidic environments. Int J Syst Evol Microbiol 50:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Sugisawa T, Tazoe M, Shinjoh M, Fujiwara A (1990) Metabolic pathway for 2-keto-L-gulonic acid formation in Gluconobacter melanogenus IFO 3293. Agric Biol Chem 54:1211–1218

    Article  CAS  Google Scholar 

  • Huong VTL, Malimas T, Yukphan P, Potacharoen W, Tanasupawat S, Loan LTT, Tanticharoen M, Yamada Y (2007) Identification of Thai isolates assigned to the genus Gluconobacter based on 16S-23S rDNA ITS restriction analysis. J Gen Appl Microbiol 53:133–142

    Article  CAS  Google Scholar 

  • Iida A, Ohnishi Y, Horinouchi S (2008a) Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter europaeus. J Bacteriol 190:2546–2555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iida A, Ohnishi Y, Horinouchi S (2008b) An OmpA family protein, a target of the GinI/GinR quorum-sensing system in Gluconacetobacter europaeus. J Bacteriol 190:5009–5019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iida A, Ohnishi Y, Horinouchi S (2009) Identification and characterization of target genes of the GinI/GinR quorum-sensing system in Gluconacetobacter europaeus. Microbiology 155:3021–3032

    Article  CAS  PubMed  Google Scholar 

  • Iino T, Suzuki R, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2012a) Acetobacter okinawensis sp. nov., Acetobacter papayae sp. nov., and Acetobacter persicus sp. nov.; novel acetic acid bacteria isolated from stems of sugarcane, fruits, and a flower in Japan. Int J Syst Evol Microbiol 58:235–243

    CAS  Google Scholar 

  • Iino T, Suzuki R, Tanaka N, Kosako Y, Ohkuma M, Komagata K, Uchimura T (2012b) Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. Int J Syst Evol Microbiol 62:1465–1469

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG, Pfenning N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Article  Google Scholar 

  • Iyer PR, Geib SM, Catchmarä J, Kao T, Tien M (2010) Genome sequence of a cellulose-producing bacterium, Gluconacetobacter hansenii ATCC 23769. J Bacteriol 192:4256–4257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakob F, Phaff A, Novoa-Carballal R, Rübsam H, Becker T, Vogel RF (2013) Structural analysis of fructans produced by acetic acid bacteria reveals a relation to hydrocolloid function. Carbohydr Polym 92:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Jeyaprakash A, Hoy MA, Allsopp MH (2003) Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. J Invertebr Pathol 84:96–103

    Article  CAS  PubMed  Google Scholar 

  • Jiang C-Y, Dai X, Wang B-J, Zhou Y-G, Liu S-J (2006) Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:25–28

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Su J, Liu H-Y, Wei Y-Z, Li Q-P, Zhang Y-Q, Yu L-Y (2012) Description of Belnapia rosea sp. nov. and emended description of the genus Belnapia Reddy et al. 2006. Int J Syst Evol Microbiol 62:705–709

    Google Scholar 

  • Jin L, Lee HG, No KJ, Ko SR, Kim HS, Ahn CY, Oh HM (2013) Belnapia soli sp. nov., a proteobacterium isolated from grass soil. Int J Syst Evol Microbiol 63:1955–1959

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212–221

    Article  CAS  PubMed  Google Scholar 

  • Jojima Y, Mihara Y, Suzuki S, Yokozeki K, Yamanaka S, Fudou R (2004) Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int J Syst Evol Microbiol 54:2263–2267

    Article  CAS  PubMed  Google Scholar 

  • Jucker W, Ettlinger L (1981) Host range of a bacteriophage of acetic acid bacteria. Int J Syst Bacteriol 31:245–246

    Article  Google Scholar 

  • Juretschko S, Beavers-May TK, Stovall SH (2010) Nosocomial infection with Asaia lannensis in two paediatric patients with idiopathic dilated cardiomyopathy. J Med Microbiol 59:848–852

    Article  PubMed  Google Scholar 

  • Kämpfer P, Andersson MA, Jäckel U, Salkinoja-Salonen M (2003) Teichococcus ludipueritiae gen. nov. sp. nov., and Muricoccus roseus gen. nov. sp. nov. representing two new genera of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 26:23–29

    Article  PubMed  Google Scholar 

  • Kämpfer P, Busse H-J, Rosséllo-Mora R, Kjellin E, Falsen E (2004) Rhodovarius lipocyclicus gen. nov. sp. nov., a new genus of the α-1 subclass of the Proteobacteria. Syst Appl Microbiol 27:511–516

    Article  PubMed  Google Scholar 

  • Katayama-Fujimura Y, Tsuzaki N, Kuraishi H (1982) Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genus Thiobacillus. J Gen Microbiol 128:1599–1611

    CAS  Google Scholar 

  • Katayama-Fujimura Y, Enokizono Y, Kaneko T, Kuraishi H (1983) Deoxyribonucleic acid homologies among species of the genus Thiobacillus. J Gen Appl Microbiol 29:287–295

    Article  CAS  Google Scholar 

  • Katayama-Fujimura Y, Kawashima I, Tsuzaki N, Kuraishi H (1984) Polyhedral inclusion bodies (carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol 30:211–222

    Article  CAS  Google Scholar 

  • Katsura K, Kawasaki H, Potacharoen W, Saono S, Seki T, Yamada Y, Uchimura T, Komagata K (2001) Asaia siamensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 51:559–563

    Article  CAS  PubMed  Google Scholar 

  • Katsura K, Yamada Y, Uchimura T, Komagata K (2002) Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984. Int J Syst Evol Microbiol 52:1635–1640

    CAS  PubMed  Google Scholar 

  • Kawai S, Goda-Tsutsumi M, Yakushi T, Kano K, Matsushita K (2013) Heterologous overexpression and characterization of a flavoprotein-cytochrome c complex fructose dehydrogenase of Gluconobacter japonicus NBRC3260. Appl Environ Microbiol 79:1654–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: The genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter and Kozakia. In: Dworkin M, Falcow S, Rosenberg E, Schleifer K–H, Stackebrands E (eds) The Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 163–200

    Chapter  Google Scholar 

  • Kim MS, Baik KS, Park SC, Rhee MS, Oh H-M, Seong CN (2009) Roseomonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 59:1630–1634

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ, Whang KS, Kwon SW (2013) Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 63:2334–2337

    Article  CAS  PubMed  Google Scholar 

  • Kimmitt MR, Williams PJLB (1963) Systematic position of Gluconobacter liquefaciens. J Gen Microbiol 31:447–449

    Article  CAS  PubMed  Google Scholar 

  • Kimoto K, Aizawa T, Urai M, Ve NB, Suzuki K, Nakajima M, Sunairi M (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. Int J Syst Evol Microbiol 60:764–768

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto N, Tano T (1987) Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J Gen Appl Microbiol 33:11–25

    Article  CAS  Google Scholar 

  • Kishimoto N, Kosako Y, Tano T (1993) Acidiphilium aminolytica sp. nov.: An acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Curr Microbiol 27:131–136

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto N, Kosako Y, Wakao N, Tano T, Hiraishi A (1995) Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18:85–91

    Article  Google Scholar 

  • Klasen R, Bringer-Meyer S, Sahm H (1992) Incapability of Gluconobacter oxydans to produce tartaric acid. Biotechnol Bioeng 40:183–186

    Article  CAS  PubMed  Google Scholar 

  • Kluyver AJ (1983) Beijerinck the microbiologist. In: van Iterson G, den Dooren de Jong LE, Kluyver A (eds) Martinus Willem Beijerinck His life and His work. Science Tech Inc., Madison, pp 132–134

    Google Scholar 

  • Kommanee J, Tanasupawat S, Yukphan P, Malimas T, Muramatsu Y, Nakagawa Y, Yamada Y (2010) Asaia spathodeae sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 56:81–87

    Article  CAS  PubMed  Google Scholar 

  • Kommanee J, Tanasupawat S, Yukphan P, Malimas T, Muramatsu Y, Nakagawa Y, Yamada Y (2011) Gluconobacter nephelii sp. nov., an acetic acid bacterium in the class Alphaproteobacteria. Int J Syst Evol Microbiol 61:2117–2122

    Article  PubMed  Google Scholar 

  • Kondo K, Ameyama M (1958) Carbohydrate metabolism by Acetobacter species Part 1 Oxidative activity for various carbohydrates. Bull Agric Chem Soc Japan 22:369–372

    Article  CAS  Google Scholar 

  • Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P, Bourtzis K (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75:3281–3288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozulis JA, Parsons RH (1958) Acetobacter alcoholophilus n. sp. - a new species isolated from storage beer. J Inst Brew 64:47–50

    Article  Google Scholar 

  • Kraft MM (1959) Le champignon du thé. Nova Hedwiga 1:297–304

    Google Scholar 

  • Kurtzman CP, Robnett CJ, Basehoar-Powers E (2001) Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from ‘Kombucha tea’. FEMS Yeast Res 1:133–138

    Article  CAS  PubMed  Google Scholar 

  • Kützing FT (1837) Mikoroscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden. J prakt Chem 11:385–409

    Google Scholar 

  • Lambert B, Kersters K, Gosselé F, Swings J, De Ley J (1981) Gluconobacters from honey bees. Antonie van Leeuwenhoek 47:147–157

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Reth A, Meletzus D, Sevilla M, Kennedy C (2000) Characterization of a major cluster of nif, fix and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus. J Bacteriol 182:7088–7091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leifson E (1954) The flagellation and taxonomy of species of Acetobacter. Antonie van Leeuwenhoek. J Microbiol Serol 20:102–110

    CAS  Google Scholar 

  • Lewis L, Stock F, Williams D, Weir S, Gill VJ (1997) Infections with Roseomonas gilardii and review of characteristics used for biochemical identification and molecular typing. Am J Clin Pathol 108:210–219

    CAS  PubMed  Google Scholar 

  • Librero AR, Tidon AG (1994) Economics of the Nata de Coco Industry. Philippine Council for Agriculture, Forestry and Natural Resources and Development, Department of Science and Technology/Philippine Agricultural and Resources Research Foundation, Inc., Los Baños

    Google Scholar 

  • Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2000) Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1950) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov. J Gen Appl Microbiol 46:147–165

    Article  CAS  PubMed  Google Scholar 

  • Lisdiyanti P, Kawasaki H, Seki T, Yamada Y, Uchimura T, Komagata K (2001) Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J Gen Appl Microbiol 47:119–131

    Article  CAS  PubMed  Google Scholar 

  • Lisdiyanti P, Kawasaki H, Widyastuti Y, Saono S, Seki T, Yamada Y, Uchimura T, Komagata K (2002) Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 52:813–818

    CAS  PubMed  Google Scholar 

  • Lisdiyanti P, Yamada Y, Uchimura T, Komagata K (2003a) Identification of Frateuria aurantia strains isolated from Indonesian sources. Microbiol Cult Coll 19:81–90

    Google Scholar 

  • Lisdiyanti P, Katsura K, Potacharoen W, Navarro RR, Yamada Y, Uchimura T, Komagata K (2003b) Diversity of acetic acid bacteria in Indonesia, Thailand and the Philippines. Microbiol Cult Coll 19:91–99

    Google Scholar 

  • Lisdiyanti P, Navarro RR, Uchimura T, Komagata K (2006) Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 56:2101–2111

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Hsu W-H, Lee F-L, Liao C-C (1996) The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol 13:407–415

    Article  Google Scholar 

  • Lobos JH, Chisolm TE, Bopp LH, Holmes DS (1986) Acidiphilium organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus ferrooxidans culture. Int J Syst Bacteriol 36:139–144

    Article  CAS  Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Lopes A, Espírito-Santo C, Grass G, Chung AP, Morais PV (2011) Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. Int J Syst Evol Microbiol 61:610–615

    Article  CAS  PubMed  Google Scholar 

  • López FCR, de Luna FF-Á, Delgado MCG, de la Rosa II, Valdezate S, Nieto JAS, Casal M (2008) Granulibacter bethesdensis isolated in a child patient with chronic granulomatous disease. J Infect 57:275–277

    Article  PubMed  Google Scholar 

  • Lusta KA, Reshetilov AN (1998) Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems (review). Appl Biochem Microbiol 34:307–320

    Google Scholar 

  • Macauley S, McNeil B, Harvey LM (2001) The genus Gluconobacter and its applications in biotechnology. Crit Rev Biotechnol 21:1–25

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2007) Gluconobacter kondonii sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 53:301–307

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2008a) Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria. J Gen Appl Microbiol 54:119–125

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2008b) Gluconobacter sphaericus (Ameyama 1975) comb. nov., a brown pigment-producing acetic acid bacterium in the Alphaproteobacteria. J Gen Appl Microbiol 54:211–220

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2008c) Asaia lannaensis sp. nov., a new acetic acid bacterium in the Alphaproteobacteria. Biosci Biotechnol Biochem 72:666–671

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Lundaa T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Suzuki K, Tanticharoen M, Yamada Y (2009a) Gluconobacter kanchanaburiensis sp. nov., a brown pigment-producing acetic acid bacterium for Thai isolates in the Alphaproteobacteria. J Gen Appl Microbiol 55:247–254

    Article  CAS  PubMed  Google Scholar 

  • Malimas T, Yukphan P, Takahashi M, Muramatsu Y, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2009b) Gluconobacter japonicus sp. nov., an acetic acid bacterium in the Alphaproteobacteria. Int J Syst Evol Microbiol 59:466–471

    Article  CAS  PubMed  Google Scholar 

  • Mamat U, Rietschel ET, Schmidt G (1995) Repression of lipopolysaccharide biosynthesis in Escherichia coli by an antisense RNA of Acetobacter methanolicus phage Acm1. Mol Microbiol 15:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Zhang DC (2013) Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. Int J Syst Evol Microbiol 63:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Masai H (1980) Recent technical developments on vinegar manufacture in Japan. In: Proceedings of the oriental fermented foods, food industry research and development institute Hsinchu, Taiwan, pp 192–205

    Google Scholar 

  • Mason LM, Claus W (1989) Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: G. oxydans (Henneberg 1897) De Ley 1961, G. frateurii sp. nov., and G. asaii. Int J Syst Bacteriol 39:174–184

    Article  Google Scholar 

  • Mason J, Kelly KP, Wood AP (1987) Chemolithotrophic and autotrophic growth of Thermothrix thiopara and some thiobacilli on thiosulphate and polythionates, and a reassessment of the growth yields of Thx. thiopara in chemostat culture. J Gen Microbiol 133:1249–1256

    CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1987) Purification, characterization and reconstitution of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim Biophys Acta 894:304–312

    Article  CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1990) Cytochrome a1 of Acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Proc Natl Acad Sci U S A 87:9863–9867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 36. Academic, London, pp 247–301

    Google Scholar 

  • Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshsino T, Adachi O (2003) 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (2004) Respiratory chain in acetic acid bacteria: Membrane-bound periplasmic sugar and alcohol respirations. In: Zannoni D (ed) Respiration of Archaea and Bacteria. Springer, Dordrecht, pp 81–99

    Chapter  Google Scholar 

  • Matsutani M, Hirakawa H, Nishikura M, Soemphol W, Ali I, Yakushi T, Matsushita K (2011) Increased number of Arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem Biophys Res Commun 409:120–124

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Hirakawa H, Saichana N, Soemphol W, Yakushi T, Matsushita K (2012) Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Microbiology 158:229–239

    Article  CAS  PubMed  Google Scholar 

  • Mayser P, Fromme S, Leitmann C, Gründer K (1995) The yeast spectrum of the ‘tea fungus Kombucha’. Mycoses 38:289–295

    Article  CAS  PubMed  Google Scholar 

  • Meyer O, Stackebrandt E, Auling G (1993) Reclassification of ubiquinone Q-10 containing carbooxidotrophic bacteria: Transfer of “[Pseudomonas] carboxydovorans” OM5T to Oligotropha, gen. nov., as Oligotropha carboxidovorans, comb. nov., transfer of “[Alcaligenes] carboxydus” DSM 1086T to Carbophilus, gen. nov., as Carbophilus carboxidus, comb. nov., transfer of “[Pseudomonas] compransoris” DSM 1231T to Zavarzinia, gen. nov., as Zavarzinia compransoris, comb. nov., amended description of the new genera. Syst Appl Microbiol 16:390–395

    Article  CAS  Google Scholar 

  • Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, Moro CV (2013a) Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol 83:63–73

    Article  CAS  PubMed  Google Scholar 

  • Minard G, Mavingui P, Moro CV (2013b) Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors 6:146

    Article  PubMed Central  PubMed  Google Scholar 

  • Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, Kita K, Matsushita K (2013) Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem 153:535–545

    Article  CAS  PubMed  Google Scholar 

  • Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272

    Article  CAS  PubMed  Google Scholar 

  • Moore JE, McCalmont M, Xu J, Millar BC, Heaney N (2002) Asaia sp., an unusual spoilage organism of fruit-flavored bottle water. Appl Environ Microbiol 68:4130–4131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muthukumarasamy R, Cleenwerck I, Revathi G, Vadivelu M, Janssens D, Hoste B, Kum KU, Park KD, Son CY, Sa T, Caballero-Mellado J (2005) Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol 28:277–286

    Article  CAS  PubMed  Google Scholar 

  • Nanda K, Taniguchi M, Ujike S, Ishihara N, Mori H, Ono H, Murooka Y (2001) Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 67:986–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro R, Komagata K (1999) Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. J Gen Appl Microbiol 45:7–15

    Article  CAS  PubMed  Google Scholar 

  • Ndoye B, Cleenwerck I, Engelbeen K, Dubos-Dauphin R, Guiro AT, van Trappen S, Willems A, Thonart P (2007) Acetobacter senegalensis sp. nov., a thermotolerant acetic acid bacterium isolated in Senegal (sub-Saharan Africa) from mango fruit (Mangifera indica L.). Int J Syst Evol 57:1576–1581

    Article  CAS  Google Scholar 

  • Nickol GB (1979) Vinegar. In: Peppler HJ, Perlman D (eds) Microbial Technology, vol 2. Academic, London, pp 155–172

    Google Scholar 

  • Norris PR, Marsh RM, Lindstrom EB (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotechnol Appl Biochem 8:318–329

    CAS  Google Scholar 

  • Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohtsuka S (1990) Vinegar in Japan. In: Ameyama M, Ohtsuka S (eds) Sciences of vinegar. Asakura Shoten, Tokyo, pp 18–36 (in Japanese)

    Google Scholar 

  • Okafor N (1975) Microbiology of Nigerian palm wine with particular reference to bacteria. J Appl Bacteriol 38:81–88

    Article  Google Scholar 

  • Park YM, Rhee SK, Choi ES, Chung IS (1998) Effect of cross-linking agents on L-sorbose production by immobilized Gluconobacter suboxydans cells. J Microbiol Biotechnol 8:696–699

    CAS  Google Scholar 

  • Passmore SM, Carr JG (1975) The ecology of the acetic acid bacteria with particular reference to cider manufacture. J Appl Bacteriol 38:151–158

    Article  Google Scholar 

  • Pasteur, L (1868) Etude sur le vinaigre. Paris

    Google Scholar 

  • Pedraza RO (2008) Recent advances in nitrogen fixing acetic acid bacteria. Int J Food Microbiol 125:25–35

    Article  CAS  PubMed  Google Scholar 

  • Peynaud E, Domercq S (1961) Présence de bactéries lactiques sur les raisins mûrs C. R. Hebd. Séances. Acad Sci Série D 252:3343–3344

    CAS  Google Scholar 

  • Persoon CH (1822) Mycologia europaea. Sectio Tertia, Particula Prima, Erlangae

    Google Scholar 

  • Pfennig N (1974) Rhodopseudomonas globiformis, sp. n., a new species of the Rhodospirillaceae. Arch Microbiol 100:197–206

    Article  CAS  Google Scholar 

  • Pfennig N, Trüper HG (1983) Taxonomy of phototrophic green and purple bacteria: a review. Ann Microbiol (Paris) 134B:9–20

    CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorous in soil in connection with vital activity of some of the microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75:293–306

    Article  CAS  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydan. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Bahena MH, Tejedor C, Martín I, Valázques E, Peix A (2013) Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in acidic soil. Int J Syst Evol Microbiol 63:1760–1765

    Article  PubMed  CAS  Google Scholar 

  • Reddy GSN, Nagy M, Garcia-Pichel F (2006) Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 56:51–58

    Article  CAS  PubMed  Google Scholar 

  • Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG, Yu VL (1993) Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31:3275–3283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robakis NK, Palleroni NJ, Despreaux CW, Boublik M, Baker CA, Churn PJ, Claus GW (1985a) Construction of a restriction map of the Gluconobacter bacteriophage A-1 genome. J Gen Microbiol 131:2475–2477

    CAS  Google Scholar 

  • Robakis NK, Palleroni NJ, Despreaux CW, Boublik M, Baker CA, Churn PJ, Claus GW (1985b) Isolation and characterization of two phages for Gluconobacter oxydans. J Gen Microbiol 131:2467–2473

    CAS  Google Scholar 

  • Romero-Cortes T, Robles-Olvera V, Rodriguez-Jimenes G, Ramirez-Lepe M (2012) Isolation and characterization of acetic acid bacteria in cocoa fermentation. African. J Microbiol Res 6:339–347

    CAS  Google Scholar 

  • Ryu J–H, Kim S–H, Lee H-Y, Bai J-Y, Nam Y-D, Bae J-W, Lee DG, Shin SC, Ha E-M, Lee W-J (2008) Innate immune homeostasis by the homeobox gene Caudal and commensal-gut mutualism in Drosophila. Science 319:777–782

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-Keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain. Appl Environ Microbiol 63:454–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitoh S, Nishimura Y (1996) Taxonomic characterization of novel aerobic bacteriochlorophyll-containing bacteria isolated from soil. J Gen Appl Microbiol 42:121–140

    Article  CAS  Google Scholar 

  • Saitoh S, Suzuki T, Nishimura Y (1998) Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Bacteriol 48:1043–1047

    Article  PubMed  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157:899–910

    Article  CAS  PubMed  Google Scholar 

  • Samaddar N, Paul A, Chakravorty S, Chakraborty W, Mukherjee J, Chowdhuri D, Gachhui R (2011) Nitrogen fixation in Asaia sp. (Family Acetobacteraceae). Curr Microbiol 63:226–231

    Article  CAS  PubMed  Google Scholar 

  • San Martin-Uriz P, Gomez MJ, Arcas A, Bargiela R, Amils R (2011) Draft genome sequence of the electricigen Acidiphilium sp. strain PM (DSM 24941). J Bacteriol 193:5585–5586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sánchez-Porro C, Gallego V, Busse HJ, Kämpfer P, Ventosa A (2009) Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas. Int J Syst Evol Microbiol 59:1193–1198

    Article  PubMed  CAS  Google Scholar 

  • Sandoe JAT, Malnick H, Loudon KW (1997) A case of peritonitis caused by Roseomonas gilardii in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Microbiol 35:2150–2152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato K (1978) Bacteriochlorophyll formation by facultative methylotrophs, Protaminobacter ruber and Pseudomonas AM 1. FEBS Lett 85:207–210

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yamada Y, Aida K, Uemura T (1969a) Enzymatic studies on the oxidation of sugar and sugar alcohol VII. On the catabolism of D-sorbitol by way of 5-keto-D-fructose in Gluconobacter suboxydans. Agric Biol Chem 33:1612–1618

    Article  CAS  Google Scholar 

  • Sato K, Yamada Y, Aida K, Uemura T (1969b) Enzymatic studies on the oxidation of sugar and sugar alcohol VIII. Particle-bound L-sorbose dehydrogenase. J Biochem 66:521–527

    CAS  PubMed  Google Scholar 

  • Schledel M (2000) Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In: Kelly DR (ed) Biotransformations II, vol 8b, Biotechnology. Wiley-VCH, Weinheim, pp 296–308

    Google Scholar 

  • Schocher AJ, Kuhn H, Schindler B, Palleroni NJ, Despreaux CW, Boublik M, Miller PA (1979) Acetobacter bacteriophage A-1. Arch. Microbiology 121:193–197

    CAS  Google Scholar 

  • Schüller G, Hertel C, Hammes WP (2000) Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Evol Microbiol 50:2013–2020

    Article  PubMed  Google Scholar 

  • Schwan RF (1998) Cocoa fermentations with a defined microbial cocktail inoculum. Appl Environ Microbiol 64:1477–1483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwan RF, Weals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221

    Article  CAS  PubMed  Google Scholar 

  • Seearunruangchai A, Tanasupawat S, Keeratipibul S, Thawai C, Itoh T, Yamada Y (2004) Identification of acetic acid bacteria isolated from fruits collected in Thailand. J Gen Appl Microbiol 50:47–53

    Article  CAS  PubMed  Google Scholar 

  • Sellmer S, Sievers M, Teuber M (1992) Morphology, virulence and epidemiology of bacteriophage particles isolated from industrial vinegar fermentations. Syst Appl Microbiol 15:610–616

    Article  Google Scholar 

  • Servín-Garcidueñas LE, Garrett RA, Amils R, Martínez-Romero E (2013) Genome sequence of the acidophilic bacterium Acidocella sp. strain MX-AZ02. Genome Announc 1:e00041–e000412

    PubMed Central  PubMed  Google Scholar 

  • Sevilla M, Meletzus D, Teixeira K, Lee S, Nutakki A, Baldani I, Kennedy C (1997) Analysis of nib and regulatory genes in Acetobacter diazotrophicus. Soil Biol Biochem 29:871–874

    Article  CAS  Google Scholar 

  • Shimwell JL (1958) Flagellation and taxonomy of Acetobacter and Acetomonas. Antonie van Leeuwenhoek 24:187–192

    Article  CAS  PubMed  Google Scholar 

  • Shimwell JL, Carr JG (1959) The genus Acetomonas. Antonie van Leeuwenhoek 25:353–368

    Article  Google Scholar 

  • Sievers M, Swings J (2005a) Family II. Acetobacteraceae Gillis and De Ley 1980. In: Brenner DJ, Krieg NR, Staley JT (ed, vol 2), Garrity GM (Ed. in Chief) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 41–95

    Google Scholar 

  • Sievers M, Swings J (2005b) Genus I. Acetobacter Beijerinck 1898. In: Brenner DJ, Krieg NR, Staley JT (ed, vol 2), Garrity GM (Ed. in Chief) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 51–54

    Google Scholar 

  • Sievers M, Swings J (2005c) Genus VIII. Gluconacetobacter Yamada, Hoshino, and Ishikawa 1998 (Effective publication: Yamada, Hoshino, and Ishikawa 1997). In: Brenner DJ, Krieg NR, Staley JT (ed, vol 2), Garrity GM (Ed. in Chief) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 72–77

    Google Scholar 

  • Sievers M, Swings J (2005d) Genus IX. Gluconobacter Asai 1935. In: Brenner DJ, Krieg NR, Staley JT (ed, vol 2), Garrity GM (Ed. in Chief) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria. Springer, New York, pp 77–81

    Google Scholar 

  • Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392

    Article  Google Scholar 

  • Sievers M, Ludwig W, Teuber M (1994a) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodopila and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of Proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196

    Article  CAS  Google Scholar 

  • Sievers M, Ludwig W, Teuber M (1994b) Revival of the species Acetobacter methanolicus (ex Uhlig et al. 1986) nom. rev. Syst Appl Microbiol 17:352–354

    Article  CAS  Google Scholar 

  • Sievers M, Lanini C, Weber A, Schuler-Schmid U, Teuber M (1995) Microbiology and fermentation balance in a Kombucha beverage obtained from a tea fungus fermentation. Syst Appl Microbiol 18:590–594

    Article  Google Scholar 

  • Silva LR, Cleenwerck I, Rivas P, Swings J, Trujillo ME, Willems A, Velázquez E (2006) Acetobacter oeni sp. nov., isolated from spoiled red wine. Int J Syst Evol Microbiol 56:21–24

    Article  CAS  PubMed  Google Scholar 

  • Simonart P, Laudelout H (1951) Etude microbiologique et biochimique du vin de palme. Bulletin de l’Institut Royal Colonial Belge 22:385–401

    Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (eds) (1980) Approved Lists of Bacterial Names. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Slapšak N, Cleenwerck I, De Vos P, Trček J (2013) Gluconacetobacter maltaceti sp. nov., a novel vinegar producing acetic acid bacterium. Syst Appl Microbiol 36:17–21

    Article  PubMed  CAS  Google Scholar 

  • Snyder RW, Ruhe J, Kobrin S, Wasserstein A, Doline C, Nachamkin I, Lipschutz JH (2004) Asaia bogorensis peritonitis identified by 16S ribosomal RNA sequence analysis in a patient receiving peritoneal dialysis. Am J Kidney Dis 44:e15–e17

    Article  PubMed  Google Scholar 

  • Soemphol W, Adachi O, Matsushita K, Toyama H (2008) Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii. Biosci Biotechnol Biochem 72:842–850

    Article  CAS  PubMed  Google Scholar 

  • Sokollek S, Hertel JC, Hammes WP (1998) Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48:935–940

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38:321–325

    Article  Google Scholar 

  • Stadelmann E (1957) Der Teepilz eine Literaturzusammenstellung. Sydowia 9:380–388

    Google Scholar 

  • Stamm WW, Kittelmann M, Follmann H, Trüper HG (1989) The occurrence of bacteriophages in spirit vinegar fermentation. Appl Microbiol Biotechnol 30:41–46

    Google Scholar 

  • Steudel A, Miethe D, Babel W (1980) Bakterium MB 58, ein methyltrophes “Esseigsäurebakterium”. Z Allg Mikrobiol 20:663–672

    Article  CAS  PubMed  Google Scholar 

  • Struthers M, Wong J, Janda JM (1996) An initial appraisal of the clinical significance of Roseomonas species associated with human infections. Clin Infect Dis 23:729–733

    Article  CAS  PubMed  Google Scholar 

  • Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64

    Article  CAS  PubMed  Google Scholar 

  • Sugisawa T, Hoshino T, Nomura S, Fujisawa A (1991) Isolation and characterization of membrane-bound L-sorbose dehydrogenase from Gluconobacter melanogenus UV 10. Agric Biol Chem 55:363–370

    Article  CAS  Google Scholar 

  • Suzuki R, Komagata K, Uchimura T (2008) Isolation and identification of acetic acid bacteria in Japan. In: Abstracts of the Annual Meeting of the Japan Society for Bioscience, Biotechnology, and Agrochemistry, Nagoya 2A18p16 (in Japanese)

    Google Scholar 

  • Suzuki R, Lisdiyanti P, Komagata K, Uchimura T (2009) MxaF, a gene encoding alpha subunit of methanol dehydrogenase in and false growth of acetic acid bacteria on methanol. J Gen Appl Microbiol 55:101–110

    Article  CAS  PubMed  Google Scholar 

  • Suzuki R, Zhang Y, Iino T, Kosako Y, Komagata K, Uchimura T (2010) Asaia astilbes sp. nov., Asaia platycodi sp. nov., and Asaia prunellae sp. nov., novel acetic acid bacteria isolated from flowers in Japan. J Gen Appl Microbiol 56:339–346

    Article  CAS  PubMed  Google Scholar 

  • Swings J (1992) The genera Acetobacter and Gluconobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, vol 3, 2nd edn. Springer-Verlag, New York, pp 2268–2286

    Google Scholar 

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swings J, Sievers M (2005) Genus II. Frateuria Swings, Gills, Kersters, De Vos, Gosselé and De Ley 1980. In: Brenner DJ, Krieg NR, Staley JT (ed, vol 2), Garrity GM (ed. in Chief) Bergey’s manual of systematic bacteriology, 2nd edn, vol 2. The Proteobacteria Part B The Gammaproteobacteria. Springer, New York, pp 91–93

    Google Scholar 

  • Swings J, Gillis M, Kersters K, De Vos P, Gosselé F, De Ley J (1980) Frateuria, a new genus for “Acetobacter aurantius”. Int J Syst Bacteriol 30:547–556

    Article  CAS  Google Scholar 

  • Takahashi T (1907) Studies on diseases of saké. Bull Coll Agric Univ Tokyo 7:531–563

    Google Scholar 

  • Tanaka M, Murakami S, Shinke R, Aoki K (1999) Reclassification of the strains with low G+C contents of DNA belonging to the genus Gluconobacter Asai 1935 (Acetobacteraceae). Biosci Biotechnol Biochem 63:989–992

    Article  CAS  Google Scholar 

  • Tanasupawat S, Thawai C, Yukphan P, Moonmagmee D, Itoh T, Adachi O, Yamada Y (2004) Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50:159–167

    Article  CAS  PubMed  Google Scholar 

  • Tanasupawat S, Kommanee J, Malimas T, Yukphan P, Nakagawa Y, Yamada Y (2009) Identification of Acetobacter, Gluconobacter, and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ 24:135–143

    Article  PubMed  Google Scholar 

  • Tanasupawat S, Kommanee J, Yukphan P, Muramatsu Y, Nakagawa Y, Yamada Y (2011a) Acetobacter farinalis sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 57:159–167

    Article  CAS  PubMed  Google Scholar 

  • Tanasupawat S, Kommanee J, Yukphan P, Moonmangmee D, Muramatsu Y, Nakagawa Y, Yamada Y (2011b) Gluconobacter uchimurae sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 57:293–301

    Article  CAS  PubMed  Google Scholar 

  • Tang M, Lv L, Jing S, Zhu L, He G (2010) Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol 76:1740–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tazato N, Nishijima M, Handa Y, Kigawa R, Sano C, Sugiyama J (2012) Gluconacetobacter tumulicola sp. nov. and Gluconacetobacter asukensis sp. nov., isolated from the stone chamber interior of the Kitora Tumulus. Int J Syst Evol Microbiol 62:2032–2038

    Article  CAS  PubMed  Google Scholar 

  • Teoh AL, Heard G, Cox J (2004) Yeast ecology of Kombucha fermentation. Int J Food Microbiol 95:119–126

    Article  CAS  PubMed  Google Scholar 

  • Terada O, Tomizawa K, Suzuki S, Kinoshita S (1960) Formation of 5-dehydrofructose by members of Acetobacter. Bull Agric Chem Soc Jpn 24:535–536

    Article  CAS  Google Scholar 

  • Teuber M, Andresen A, Sievers M (1987) Bacteriophage problems in vinegar fermentations. Biotechnol Lett 9:37–38

    Article  Google Scholar 

  • Thompson SS, Miller KB, Lopez AS (2001) Cocoa and coffee. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food Microbiology: Fundamentals and Frontiers, 2nd edn. American Society for Microbiology, Washington, DC, pp 649–661

    Google Scholar 

  • Thurner C, Vela C, Thöny-Meyer L, Meile L, Teuber M (1997) Biochemical and genetic characterization of the acetaldehyde dehydrogenase complex from Acetobacter europaeus. Arch Microbiol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ, Kämpfer P, Euzéby JP, Oren A (2006) Valid publication of names of prokaryotes according to the rules of nomenclature: Past history and current practice. Int J Syst Evol Microbiol 56:2715–2720

    Article  PubMed  Google Scholar 

  • Tkac J, Gemeiner P, Svitel J, Benikovsky T, Sturdik E, Vala V, Petrus L, Hrabarova E (2000) Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal Chim Acta 420:1–7

    Article  CAS  Google Scholar 

  • Tkac J, Navratil M, Sturdik E, Gemeiner P (2001) Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb Technol 28:383–388

    Article  CAS  PubMed  Google Scholar 

  • Toyosaki H, Kojima Y, Tsuchida T, Hoshino K-I, Yamada Y (1995) The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: The proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 41:307–314

    Article  CAS  Google Scholar 

  • Trček J, Matsushita K (2013) A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia. Appl Microbiol Biotechnol 97:7369–7376

    Article  PubMed  CAS  Google Scholar 

  • Tuuminen T, Heinaskmaki T, Kerttula T (2006) First report of bacteremia by Asaia bogorensis, in a patient with a history of intravenous-drug abuse. J Clin Microbiol 44:3048–3050

    Article  PubMed Central  PubMed  Google Scholar 

  • Uhlig H, Karbaum K, Steudel A (1986) Acetobacter methanolicus sp. nov., an acidophilic facultatively methylotrophic bacterium. Int J Syst Bacteriol 36:317–322

    Article  CAS  Google Scholar 

  • Urakami T, Tamaoka J, Suzuki K, Komagata K (1989) Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39:50–55

    Article  CAS  Google Scholar 

  • Urbance JW, Bratina BJ, Stoddard SF, Schmidt TM (2001) Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize L-sorbose to 2-keto-L-gulonic acid. Int J Syst Evol Microbiol 51:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Ureta A, Nordlund S (2002) Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein. J Bacteriol 184:5805–5809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallery-Radot P (1924) Oeuvres de Pasteur. Tome III. Études sur le vinaigre et le vin. Masson and Co., Paris

    Google Scholar 

  • Vasallo FJ, Alcalá L, Cercendo E, García-Garrote F, Rodríguez-Créixems M, Bouza E (1998) Bacteremia due to Roseomonas. Clin Microbiol Infect 4:109–111

    Article  PubMed  Google Scholar 

  • Vasilyeva LV (1985) Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov. Int J Syst Bacteriol 35:518–521

    Article  Google Scholar 

  • Venkata Ramana V, Sasikala C, Takaichi S, Ramana CV (2010) Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 33:198–203

    Article  CAS  PubMed  Google Scholar 

  • Visser’t Hooft F (1925) Biochemische onderzoekingen over het geslacht Acetobacter. Dissertation, Technical University Meinema Delft, pp 1–129

    Google Scholar 

  • Vu HTL, Yukphan P, Chaipitakchoniatam W, Malimas T, Muramatasu Y, Bui UTT, Tanasuapwat S, Duong KC, Nakagawa Y, Pham HT, Yamada Y (2013) Nguyenibacter vanlangensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 59:153–166

    Article  CAS  Google Scholar 

  • Wakao N, Koyatsu H, Komai Y, Shimokawara H, Sakurai Y, Shiota H (1988) Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid mine water from a sulfur-pyrite mine. Geomicrobiol J 6:1254–1261

    Article  Google Scholar 

  • Wakao N, Nagasawa N, Matsuura T, Matsukura H, Matsumoto T, Hiraishi A, Sakurai Y, Shiota H (1994) Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40:143–159

    Article  CAS  Google Scholar 

  • Wallace PL, Hollis DG, Weaver RE, Moss CW (1990) Biochemical and chemical characterization of pink-pigmented oxidative bacteria. J Clin Microbiol 28:689–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward TE, Bruhn DF, Shean ML, Watkins CS, Bulmer D, Winston V (1993) Characterization of a new bacteriophage which infects bacteria of the genus Acidiphilium. J Gen Virol 74:2419–2425

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wermischeff M (1893) Recherches sur les microbes acétifiants. Ann de l’Institut Pasteur 7:213–217

    Google Scholar 

  • Wichlacz PL, Unz RF (1981) Acidophilic, heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol 41:1254–1261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wichlacz PL, Unz RF, Langworthy TA (1986) Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., and Acidiphilium rubrum sp. nov.: Acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int J Syst Bacteriol 36:197–201

    Article  Google Scholar 

  • Yakushi T, Matsushita K (2009) The respiratory enzymes responsible for oxidative fermentation by acetic acid bacteria. Biosci Ind 67:308–315 (in Japanese)

    CAS  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: Structure, model of action and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y (1979) Classification of microorganisms based on the molecular species of the respiratory quinones. Hakko to Kogyo 37:940–954 (in Japanese)

    Google Scholar 

  • Yamada Y (1983) Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. J Gen Appl Microbiol 29:417–420

    Article  Google Scholar 

  • Yamada Y (2000) Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int J Syst Evol Microbiol 50:2225–2227

    Article  PubMed  Google Scholar 

  • Yamada, Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus as Komagataeibacter kakiaceti comb. nov., Komagataeibacter medellinensis comb. nov. and Komagataeibacter maltaceti comb. nov. Int J Syst Evol Microbiol 64:1670–1672

    Google Scholar 

  • Yamada Y, Akita M (1984) An electrophoretic comparison of enzymes in strains of Gluconobacter species. J Gen Appl Microbiol 30:115–126

    Article  CAS  Google Scholar 

  • Yamada Y, Kondo K (1984) Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. J Gen Appl Microbiol 30:297–303

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1966) A new enzyme, D-fructose dehydrogenase. Agric Biol Chem 30:95–96

    Article  CAS  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1967a) Enzymatic studies on the oxidation of sugar and sugar alcohol I. Purification and properties of particle-bound fructose dehydrogenase. J Biochem 61:636–646

    CAS  PubMed  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1967b) Enzymatic studies on the oxidation of sugar and sugar alcohol II. Purification and properties of NADPH-linked 5-ketofructose reductase. J Biochem 61:803–811

    CAS  PubMed  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1968a) Coenzyme Q10 in the respiratory chain linked to fructose dehydrogenase of Gluconobacter cerinus. Agric Biol Chem 32:532–534

    Article  CAS  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1968b) Distribution of ubiquinone 10 and 9 in acetic acid bacteria and its relation to the classification of genera Gluconobacter and Acetobacter, especially of so-called intermediate strains. Agric Biol Chem 32:786–789

    Article  CAS  Google Scholar 

  • Yamada Y, Aida K, Uemura T (1969) Enzymatic studies on the oxidation of sugar and sugar alcohol V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15:181–196

    Article  CAS  Google Scholar 

  • Yamada Y, Okada Y, Kondo K (1976a) Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22:237–245

    Article  Google Scholar 

  • Yamada Y, Nakazawa E, Nozaki A, Kondo K (1976b) Characterization of Acetobacter xylinum by ubiquinone system. J Gen Appl Microbiol 22:285–292

    Article  Google Scholar 

  • Yamada Y, Nunoda M, Ishikawa T, Tahara Y (1981a) The cellular fatty acid composition in acetic acid bacteria. J Gen Appl Microbiol 27:405–417

    Article  CAS  Google Scholar 

  • Yamada Y, Ishikawa T, Yamashita M, Tahara Y, Yamasato K, Kaneko T (1981b) Deoxyribonucleic acid base composition and deoxyribonucleic acid homology in the polarly flagellated intermediate strains. J Gen Appl Microbiol 27:465–475

    Article  CAS  Google Scholar 

  • Yamada Y, Hoshino K, Ishikawa T (1997) The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: The elevation of the subgenus Gluconoacetobacter to the generic level. Biosci Biotech Biochem 61:1244–1251

    Article  CAS  Google Scholar 

  • Yamada Y, Hosono R, Lisdiyanti P, Widyastuti Y, Saono S, Uchimura T, Komagata K (1999) Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 45:23–28

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Katsura K, Kawasaki H, Widyastuti Y, Saono S, Seki T, Uchimura T, Komagata K (2000) Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50:823–829

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y (2012a) Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol 62:849–859

    Article  CAS  Google Scholar 

  • Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y (2012b) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Uchimura T, Komagata K (2004) Emendation of the genus Acidomonas Urakami, Tamaoka, Suzuki and Komagata 1989. Int J Syst Evol Microbiol 54:865–870

    Article  CAS  PubMed  Google Scholar 

  • Yanagida F (1990a) Vinegar in China. In: Ameyama M, Ohtsuka S (eds) Sciences of vinegar. Asakura Shoten, Tokyo, pp 36–50 (in Japanese)

    Google Scholar 

  • Yanagida F (1990b) Vinegar in Asian region. In: Ameyama M, Ohtsuka S (eds) Sciences of vinegar. Asakura Shoten, Tokyo, pp 51–55 (in Japanese)

    Google Scholar 

  • Yanagida F (1990c) Present-day brewing techniques. In: Ameyama M, Ohtsuka S (eds) Sciences of vinegar. Asakura Shoten, Tokyo, pp 97–108 (in Japanese)

    Google Scholar 

  • Yoo S-H, Weon H-Y, Noh H-J, Hong S-B, Lee C-M, Kim B-Y, Kwon S-W, Go S-J (2008) Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1482–1485

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Kang S-J, Oh HW, Oh T-K (2007) Roseomonas terrae sp. nov. Int J Syst Evol Microbiol 57:2485–2488

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Takahashi M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2004a) Gluconobacter albidus (ex Kondo and Ameyama 1958) sp. nov., nom. rev., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y (2004b) Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 54:313–316

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Potacharoen W, Tanasupawat S, Tanticharoen M, Yamada Y (2005) Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic bacterium in the α-Proteobacteria. J Gen Appl Microbiol 51:301–311

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2006) Identification of strains assigned to the genus Asaia Yamada et al. 2000 based on 16S rDNA restriction analysis. J Gen Appl Microbiol 52:241–247

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Tanasupawat S, Nakagawa Y, Suzuki K, Potacharoen W, Yamada Y (2008) Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the α-Proteobacteria. Biosci Biotechnol Biochem 72:672–676

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, Tanasupawat S, Nakagawa Y, Hamana K, Tahara Y, Suzuki K, Tanticharoen M, Yamada Y (2009) Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α-Proteobacteria. Biosci Biotechnol Biochem 73:2156–2162

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Lundaa T, Muramatsu Y, Takahashi M, Kaneyasu M, Tanasupawat S, Nakagawa Y, Suzuki K, Tanticharoen M, Yamada Y (2010) Gluconobacter wancherniae sp. nov., an acetic acid bacterium from Thai isolates in the α-Proteobacteria. J Gen Appl Microbiol 56:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S, Nakagawa Y, Tanticharoen M, Yamada Y (2011) Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α-Proteobacteria. Biosci Biotechnol Biochem 75:419–426

    Article  CAS  PubMed  Google Scholar 

  • Yurkov VV (2006) Aerobic phototrophic Proteobacteria. In: Dworkin M, Falcow S, Rosenberg E, Schleifer K-H, Stackebrands E (eds) The Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 562–584

    Chapter  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad’on N, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-Q, Yu L-Y, Wang D, Liu H-Y, Sun C-H, Jiang W, Zhang Y-Q, Li W-J (2008) Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 58:2070–2074

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-Y, Liu X-Y, Liu S-J (2011) Frateuria terrea sp. nov., isolated from forest soil, and emended description of the genus Frateuria. Int J Syst Evol Microbiol 61:443–447

    Article  CAS  PubMed  Google Scholar 

  • Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Harivelo L, Raveloson R, Ravelonandro P, Mavingui P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75:377–389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Komagata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Komagata, K., Iino, T., Yamada, Y. (2014). The Family Acetobacteraceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_396

Download citation

Publish with us

Policies and ethics