Skip to main content

Cerebral Blood Flow (CBF) and Cerebral Metabolic Rate (CMR)

  • Chapter
  • First Online:
Management of Severe Traumatic Brain Injury

Abstract

Over time, we have come to understand the concepts of cerebral blood flow and its relationship to pH changes and metabolism of the brain. Current evidence tells us that insufficient flow can lead to ischemic regions of the brain with poor clinical outcome. The challenge today is to find an economical hands-on method to measure CBF bedside. With such techniques, one could hope to foster better outcome for patients with TBI. Present methods still remain in the research realm; hopefully, future will see new avenues for CBF measurements that are specific, economical and easy to utilize at the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Williams GB, Aigbirhio F, Carpenter TA, Pickard JD, Menon DK, Coles JP (2008) Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care 9:319–325

    Article  PubMed  CAS  Google Scholar 

  • Albayrak R, Degirmenci B, Acar M, Haktanır A, Colbay M, Yaman M (2007) Doppler sonography evaluation of flow velocity and volume of the extracranial internal carotid and vertebral arteries in healthy adults. J Clin Ultrasound 35:27–33

    Article  PubMed  Google Scholar 

  • Alkire MT, Haier RJ, Barker SJ, Shah NK, Wu JC, Kao YJ (1995) Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 82:393–403

    Article  PubMed  CAS  Google Scholar 

  • Alkire MT, Haier RJ, Shah NK, Anderson CT (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86:549–557

    Article  PubMed  CAS  Google Scholar 

  • Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137:679–686

    PubMed  CAS  Google Scholar 

  • Axel L (1983) Tissue mean transit time from dynamic computed tomography by a simple deconvolution technique. Invest Radiol 18:94–99

    Article  PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Stringer WA, Choi C, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77:360–368

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB (2002) Coupling between CBF and CMRO2 during neuronal activity. Int Congr Ser 1235:23–32

    Article  Google Scholar 

  • Chiron C, Raynaud C, Maziere B, Zilbovicius M, Laflamme L, Masure MC, Dulac O, Bourguignon M, Syrota A (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33:696–703

    PubMed  CAS  Google Scholar 

  • Coles JP, Fryer TD, Smielewski P et al (2004) Defining ischemic burden after traumatic brain injury using 15O PET imaging of cerebral physiology. J Cereb Blood Flow Metab 24:191–201

    Article  PubMed  Google Scholar 

  • Enevoldsen EM, Jensen FT (1978) Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48(5):689–703

    Article  PubMed  CAS  Google Scholar 

  • Golding EM, Robertson CS, Bryan RM Jr (1999) The consequences of traumatic brain injury on cerebral blood flow and autoregulation: a review. Clin Exp Hypertens 21(4):299–332

    Article  PubMed  CAS  Google Scholar 

  • Harper AM, Glass HI, Steven JL, Granat AH (1964) The measurement of local blood flow in the cerebral cortex from the clearance of xenon. J Neurol Neurosurg Psychiatry 27:255

    Article  PubMed  CAS  Google Scholar 

  • Hoeffner EG, Case I, Jain R, Gujar SK, Shah GV, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK (2004) Cerebral perfusion CT: technique and clinical applications. Radiology 231(3):632–644, Epub 2004 Apr 29

    Article  PubMed  Google Scholar 

  • Ingvar DH, Philipson L (1977) Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Ann Neurol 2:230–237

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Shiozaki T, Tasaki O et al (2005) Changes in cerebral blood flow from the acute to the chronic phase of severe head injury. J Neurotrauma 22:1411–1418

    Article  PubMed  Google Scholar 

  • Jünger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, Lam AM, Aaslid R, Winn HR (1997) Cerebral autoregulation following minor head injury. J Neurosurg 86:425–432

    Article  PubMed  Google Scholar 

  • Kaisti KK, Metsähonkala L, Teräs M, Oikonen V, Aalto S, Jääskeläinen S, Hinkka S, Scheinin H (2002) Effects of surgical levels of propofol and sevoflurane anesthesia on cerebral blood flow in healthy subjects studied with positron emission tomography. Anesthesiology 96(6):1358–1370

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Kuwabara Y, Mihara F, Yoshiura T, Nakagawa M, Tanaka A, Sasaki M, Koga H, Hayashi K, Honda H (2004) Validation of the CBF, CBV, and MTT values by perfusion MRI in chronic occlusive cerebrovascular disease: a comparison with 15O-PET. Acad Radiol 11(5):489–497

    Article  PubMed  Google Scholar 

  • Kelcz F, Hilal SK, Hartwell P, Joseph PM (1978) Computed tomography measurement of the xenon brain–blood partition coefficient and implications for the regional cerebral blood flow: a preliminary report. Radiology 127:358–392

    Google Scholar 

  • Kety SS, Schmidt CF (1946) Measurement of cerebral blood flow and cerebral oxygen consumption in man. Fed Proc. Jun;5:264

    Google Scholar 

  • Kety SS, Schmidt CF (1948) The effect of altered arterial tension of carbon dioxide and oxygen on cerebral oxygen consumption of normal young men. J Clin Invest 27:484–492

    Article  CAS  Google Scholar 

  • Knutsson L, Börjesson S, Larsson EM, Risberg J, Gustafson L, Passant U, StÃ¥hlberg F, Wirestam R (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 26:913–920

    Article  PubMed  Google Scholar 

  • Kontos HA, Wei EP, Jarrel Raper A, Patterson JL (1977) Local mechanism of CO2 action on cat pial arterioles. Stroke 8:226–229

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Ingvar DH (1961) The blood flow of the cerebral cortex determined by radioactive krypton. Experientia. Jan 15;17:42–3

    Article  PubMed  CAS  Google Scholar 

  • Madsen PL, Schmidt JF, Wildschiødtz G, Friberg L, Holm S, Vorstrup S, Lassen NA (1991) Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep. J Appl Physiol 70(6):2597–2601

    PubMed  CAS  Google Scholar 

  • Mallett BL, Veall N (1963) Investigation of cerebral blood-flow in hypertension, using radioactive-xenon inhalation and extracranial recording. Lancet. May 18;1(7290):1081–2

    PubMed  CAS  Google Scholar 

  • Martin NA, Patwardhan RV, Alexander MJ, Africk CZ, Lee JH, Shalmon E, Hovda DA, Becker DP (1997) Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg 87(1):9–19

    Article  PubMed  CAS  Google Scholar 

  • Messeter K, Nordström CH, Sundbärg G, Algotsson L, Ryding E (1986) Cerebral hemodynamics in patients with acute severe head trauma. J Neurosurg 64(2):231–237

    Article  PubMed  CAS  Google Scholar 

  • Mielck F, Bräuer A, Radke O, Hanekop G, Loesch S, Friedrich M, Hilgers R, Sonntag H (2004) Changes of jugular venous blood temperature associated with measurements of cerebral blood flow using the transcerebral double-indicator dilution technique. Eur J Anaesthesiol 21(4):289–295

    PubMed  CAS  Google Scholar 

  • Obrist WD, Thompson HK, Wang HS, Wilkinson WE (1975) Regional cerebral blood flow estimated by 133Xenon inhalation. Stroke 6:245–256

    Article  PubMed  CAS  Google Scholar 

  • Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA (1984) Cerebral blood flow and metabolism in comatose patients with acute head injury. J Neurosurg 61:241–253

    Article  PubMed  CAS  Google Scholar 

  • Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  Google Scholar 

  • Paradiso S, Johnson DL, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD (1999) Cerebral blood flow changes associated with attribution of emotional valence to pleasant, unpleasant, and neutral visual stimuli in a PET study of normal subjects. Am J Psychiatry 156:1618–1629

    PubMed  CAS  Google Scholar 

  • Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2(2):161–192

    PubMed  CAS  Google Scholar 

  • Petersen ET, Zimine I, Ho Y-CL, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701

    Article  PubMed  CAS  Google Scholar 

  • Qiu M, Ramani R, Swetye M, Rajeevan N, Constable RT (2008) Anesthetic effects on regional CBF, BOLD, and the coupling between task-induced changes in CBF and BOLD: an fMRI study in normal human subjects. Magn Reson Med 60(4):987–996

    Article  PubMed  Google Scholar 

  • Reinstrup P, Uski T, Messeter K (1992) Modulation by carbon dioxide and pH of the contractile response to potassium and prostaglandin F2α in isolated pial arteries. Br J Anaesth 69:615–620

    Article  PubMed  CAS  Google Scholar 

  • Reinstrup P, Ryding E, Algotsson L, Berntman L, Uski T (1994) Effects of nitrous oxide on human regional cerebral blood flow and isolated pial arteries. Anesthesiology 81(2):396–402

    Article  PubMed  CAS  Google Scholar 

  • Reinstrup P, Ryding E, Ohlsson T, Sandell A, Erlandsson K, Ljunggren K, Salford LG, Strand S, Uski T (2008) Regional cerebral metabolic rate (positron emission tomography) during inhalation of nitrous oxide 50% in humans. Br J Anaesth 100(1):66–71, Epub 2007 Nov 23

    Article  PubMed  CAS  Google Scholar 

  • Schalén W, Messeter K, Nordström CH (1991) Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand 35(2):113–122

    Article  PubMed  Google Scholar 

  • Scheel P, Ruge C, Schoning M (2000) Flow velocity and flow volume measurements in the extracranial carotid and vertebral arteries in healthy adults: reference data and the effects of age. Ultrasound Med Biol 26:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Ibaraki M, Ohmura T, Sugawara S, Toyoshima H, Nakamura K, Kinoshita F, Kinoshita T (2010) Whole-brain perfusion measurement using 320-detector row computed tomography in patients with cerebrovascular steno-occlusive disease: comparison with 15O-positron emission tomography. J Comput Assist Tomogr 34(6):830–835

    Article  PubMed  Google Scholar 

  • Vajkoczy P, Roth H, Horn P, Lucke T, Thomé C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P (2000) Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 93:265–274

    Article  PubMed  CAS  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  PubMed  CAS  Google Scholar 

  • Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A 89:212–216

    Article  PubMed  CAS  Google Scholar 

  • Wirestam R, Engvall C, Ryding E, HoltÃ¥s S, StÃ¥hlberg F, Reinstrup P (2009) Change in cerebral perfusion detected by dynamic susceptibility contrast magnetic resonance imaging: normal volunteers examined during normal breathing and hyperventilation. J Biomed Sci Eng 2:210–215

    Article  Google Scholar 

  • Yazici B, ErdoÄŸmuÅŸ B, Tugay A (2005) Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults. Diagn Interv Radiol 11:195–198

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Reinstrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reinstrup, P., Bloomfield, E.L. (2012). Cerebral Blood Flow (CBF) and Cerebral Metabolic Rate (CMR). In: Sundstrom, T., Grände, PO., Juul, N., Kock-Jensen, C., Romner, B., Wester, K. (eds) Management of Severe Traumatic Brain Injury. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28126-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28126-6_35

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28125-9

  • Online ISBN: 978-3-642-28126-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics