Skip to main content

The Bad Berka Dose Protocol: Comparative Results of Dosimetry in Peptide Receptor Radionuclide Therapy Using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 194))

Abstract

Purpose: The objective of this study is to analyze the in vivo behavior of the 177Lu-labeled peptides DOTATATE, DOTANOC, and DOTATOC used for peptide receptor radionuclide therapy (PRRNT) of neuroendocrine tumors (NETs), by measuring organ and tumor kinetics and by performing dosimetric calculations. Methods: Two hundred fifty-three patients (group 1) with metastasized NET who underwent PRRNT were examined. Out of these, 185 patients received 177Lu-DOTATATE, 9 were treated with 177Lu-DOTANOC, and 59 with 177Lu-DOTATOC. Additionally, 25 patients receiving, in consecutive PRRNT cycles, DOTATATE followed by DOTATOC (group 2) and 3 patients receiving DOTATATE and DOTANOC (group 3) were analyzed. Dosimetric calculations (according to MIRD scheme) were performed using OLINDA software. Results: In group 1, DOTATOC exhibited the lowest and DOTANOC the highest uptake and therefore mean absorbed dose in normal organs (whole body, kidney, and spleen). In group 2, there was a significant difference between DOTATATE and DOTATOC concerning kinetics and normal organ doses. 177Lu-DOTATOC had the lowest uptake/dose delivered to normal organs and highest tumor-to-kidney ratio. There were no significant differences between the three peptides concerning tumor kinetics and mean absorbed tumor dose. Conclusions: The study demonstrates a correlation between high affinity of DOTANOC in vitro and high uptake in normal organs/whole body in vivo, resulting in a higher whole-body dose. DOTATOC exhibited the lowest uptake and dose delivered to normal tissues and the best tumor-to-kidney ratio. Due to large interpatient variability, individual dosimetry should be performed for each therapy cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bodei L, Cremonesi M, Zoboli S (2003) Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med 30:207–216

    Article  CAS  Google Scholar 

  • Bolch W, Eckermann KF, Sgouros G, Thomas SR (2009) MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature. J Nucl Med 50:477–484

    Article  PubMed  CAS  Google Scholar 

  • Cremonesi M, Ferrari M, Bodei L, Giampiero T, Paganelli G (2006) Dosimetry in peptide receptor therapy: a review. J Nucl Med 47:1467–1475

    PubMed  CAS  Google Scholar 

  • De Jong M, Valkema R, Jamar F (2002) Somatostatin receptor-targeted radionuclide therapy of tumours: Preclinical and clinical findings. Semin Nucl Med 32:133

    Article  PubMed  Google Scholar 

  • Erion JL, Bugaj JE, Schmidt MA et al (1999) High radiotherapeutic efficacy of 177Lu-DOTA-Y3- octreotate in a rat tumour model. [Abstract]. J Nucl Med 40:223

    Google Scholar 

  • Esser JP, Krenning EP, Teunissen JJM (2006) Comparison of [177Lu-DOTA0, Tyr3] octreotate and [177Lu-DOTA0, Tyr3] octreotide: which peptide is preferable for PRRT? Eur J Nucl Med 33:1346–1351

    Article  CAS  Google Scholar 

  • Forrer F, Uusijärvi H, Waldherr C (2004) A comparison of 111In-DOTATOC and 111In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med 31:1257–1262

    Article  CAS  Google Scholar 

  • Helisch A, Förster GJ, Reber H (2004) Pre-therapeutic dosimetry and biodistribution of 86Y-DOTA-Phe1- Tyr3-octreotide versus 111In-pentetreotide in patients with advanced neuroendocrine tumours. Eur J Nucl Med 31:1386–1392

    Article  CAS  Google Scholar 

  • Jamar F, Barone R, Matthieu I et al (2003) 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487) -a phase 1 clinical study: Pharmacokinetics, biodistribution, renal protective effect of different regiments of amino acid coinfusion. Eur J Nucl Med Mol Imaging 30:510

    Article  PubMed  CAS  Google Scholar 

  • Koral KF, Kaminski MS (2003) Correlation of tumour radiation-absorbed dose with response is easier to find in previously untreated patients. Letter to the editor. J Nucl Med 44:1541–1543

    PubMed  Google Scholar 

  • Kwekkeboom DJ, Bakker WH, Kooij PM (2001) [177Lu-DOTA0, Tyr3] octreotate: comparison with [111In- DTPA0] octreotide in patients. Eur J Nucl Med 28:1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, Mueller-Brand J, Paganelli G (2005a) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogues. J Nucl Med 46(Suppl 1):62S–66S

    PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, Teunissen JJ, Bakker WH et al (2005b) Radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]-Octreotate in patients with endocrine gastroenteropancreatic tumours. J Clin Oncol 23:2754

    Article  PubMed  CAS  Google Scholar 

  • Otte A, Mueller-Brand J, Dellas S (1998) Yttrium-90 labelled somatostatin analogue for cancer treatment. Lancet 351:417

    Article  PubMed  CAS  Google Scholar 

  • Prasad V, Fetscher S, Baum RP (2007) Changing role of somatostatin receptor targeted drugs in NET: nuclear medicine’s view. J Pharm Pharm Sci 10(2):321–337

    Google Scholar 

  • Prasad V, Ambrosini V, Hommann M, Hörsch D, Fanti S, Baum RP (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Schär J, Waser B, Wenger S, Heppeler A, Schmitt J, Mäcke HR (2000) Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  PubMed  CAS  Google Scholar 

  • Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumours. Semin Nucl Med 36:228

    Article  PubMed  Google Scholar 

  • Sgouros G, Squeri S, Ballangrud AM (2003) Patient-specific 3-dimensional dosimetry in non-Hodgkin’s lymphoma patients treated with 131I-anti-B1 antibody: assessment of tumour dose response. J Nucl Med 44:260–268

    PubMed  CAS  Google Scholar 

  • Sgouros G (2005) Dosimetry of internal emitters. J Nucl Med 46:18S–27S

    PubMed  Google Scholar 

  • Siegel JA, Thomas SR, Stubbs JB (1999) MIRD Pamphlet 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    PubMed  CAS  Google Scholar 

  • Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85(3):294–310

    Article  PubMed  CAS  Google Scholar 

  • Stabin MG, Sparks RP, Crowe E (2005) OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46:1023–1027

    PubMed  Google Scholar 

  • Swärd C, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Stridsberg M, Forssell-Aronsson E, Nilsson O, Kölby L (2008) Comparison of [177Lu-DOTA0, Tyr3]-octreotate and [177Lu-DOTA0, Tyr3]- octreotide for receptor-mediated radiation therapy of the xenografted human midgut carcinoid tumour GOT1. Cancer Biother Radiopharm 23(1):114–120

    Article  PubMed  Google Scholar 

  • Valkema R, Pauwels SA, Kvols LK (2005) Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-Octreotide and 177Lu-DOTA0, Tyr3-Octreotate. J Nucl Med 46:83S–91S

    PubMed  CAS  Google Scholar 

  • Wehrmann C, Senftleben S, Zachert C, Mueller D, Baum RP (2007) Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTANOC. Cancer Biother Radiopharm 22(3):406–416

    Article  PubMed  CAS  Google Scholar 

  • Wild D, Schmitt JS, Ginj M (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labeling with various radiometals. Eur J Nucl Med 30:1338–1347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schuchardt, C., Kulkarni, H.R., Prasad, V., Zachert, C., Müller, D., Baum, R.P. (2013). The Bad Berka Dose Protocol: Comparative Results of Dosimetry in Peptide Receptor Radionuclide Therapy Using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics