Skip to main content

Knowledge Representations for Planning Manipulation Tasks

  • Book
  • © 2012

Overview

  • Latest research on Knowledge Representations for Planning Manipulation Tasks
  • Presents manipulation tasks for a humanoid robot
  • Written by a leading expert in the field

Part of the book series: Cognitive Systems Monographs (COSMOS, volume 16)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 16.99 USD 84.99
Discount applied Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

In this book, the capability map, a novel general representation of the kinematic capabilities of a robot arm, is introduced. The capability map allows to determine how well regions of the workspace are reachable for the end effector in different orientations. It is a representation that can be machine processed as well as intuitively visualized for the human. The capability map and the derived algorithms are a valuable source of information for high- and low-level planning processes. The versatile applicability of the capability map is shown by examples from several distinct application domains. In human-robot interaction, a bi-manual interface for tele-operation is objectively evaluated. In low-level geometric planning, more human-like motion is planned for a humanoid robot while also reducing the computation time. And in high-level task reasoning, the suitability of a robot for a task is evaluated.    

Similar content being viewed by others

Keywords

Table of contents (7 chapters)

Authors and Affiliations

  • , Institute of Robotics and Mechatronics, DLR German Aerospace Center, Wessling, Germany

    Franziska Zacharias

Bibliographic Information

Publish with us