Skip to main content

Bacterial Volatiles Mediating Information Between Bacteria and Plants

  • Chapter
  • First Online:
Biocommunication of Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 14))

Abstract

At present, more than 400 volatiles are known to appear in bacterial headspace samples, but more are expected as more bacteria will be investigated and several identification technologies will be applied. A comprehensive list of bacteria and their respective effects on plants were presented. The volatiles emitted from Serratia plymuthica HRO-C48 and Stenotrophomonas maltophilia R3089 retarded leaf and root development of Arabidopsis thaliana starting at day 2 of cocultivation, while first signs of activation of stress promoters appeared already after 18 h. Most A. thaliana ecotypes reacted similar to the volatiles of S. plymuthica, but a stronger root growth inhibition was observed for the accession C24. β-Phenyl-ethanol was identified as one compound of the S. plymuthica volatile mixture inhibiting the growth of Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allardyce RA, Langford VS, Hill AL, Murdoch DR (2006) Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J Microbiol Methods 65:361–365

    Article  PubMed  CAS  Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Banchio E, Xie X, Zhang H, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Blom D, Fabbri C, Eberl L, Weisskopf L (2011) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly mediated due to hydrogen cyanide. Appl Environ Microbiol 77:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  • Boland W, Ney P, Jaenicke L, Gassmann G (1984) A “closed-loop-stripping” technique as a versatile tool for metabolic studies of volatiles. In: Schreier P (ed) Analysis of volatiles. Walter De Gruyter & Co, D-Berlin, New York, pp 371–380

    Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4—toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74:2179–2186

    Article  PubMed  CAS  Google Scholar 

  • Carroll W, Lenney W, Wang TS, Spanel P, Alcock A, Smith D (2005) Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr Pulmonol 39:452–456

    Article  PubMed  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant–Microbe Interact 21:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Chuankun X, Minghe M, Leming Z, Kegin Z (2004) Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol Biochem 36:1997–2004

    Article  Google Scholar 

  • Dickschat JS, Wenzel SC, Bode HB, Müller R, Schulz S (2004) Biosynthesis of volatiles by the myxobacterium Myxococcus Xanthus. Chem Biol Chem 5:778–787

    CAS  Google Scholar 

  • Dickschat JS, Martens R, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the North Sea. Chem Biodivers 2:837–865

    Article  PubMed  CAS  Google Scholar 

  • Dugravot S, Grolleau F, Macherel D, Rochetaing A, Hue B, Stankiewicz M, Huignard J, Lapied B (2003) Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect KATP channels. J Neurophysiol 90:259–270

    Article  PubMed  CAS  Google Scholar 

  • Ercolini D, Russo F, Nasi A, Ferranti P, Villani F (2009) Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75:1990–2001

    Article  PubMed  CAS  Google Scholar 

  • Ezquer I, Li J, Ovecka M, Baroja-Fernandez E, Munoz FJ, Montero M, Diaz de Cerio J, Hildago M, Sesma MT, Bahaji A, Etxeberria E, Pozueta-Romero J (2010) Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves of mono- and dicotyledonous plants. Plant Cell Physiol 51:1674–1693

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Ryu CM, Summer LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Fiddaman PJ, Rossall S (1994) Effect of substrate on the production of antifungal volatiles from Bacillus Subtilis. J Appl Bacteriol 76:395–405

    Article  PubMed  CAS  Google Scholar 

  • Gautier H, Auger J, Legros C, Lapied B (2008) Calcium-activated potassium channels in insect pacemaker neurons as unexpected target site for the novel fumigant dimethyl disulfide. J Pharmacol Exp Ther 324:149–159

    Article  PubMed  CAS  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl Microbiol 13:935–938

    PubMed  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotions due to rhizobacterial volatiles—an effect of CO2? FEBS Lett 583:3473–3477

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  PubMed  CAS  Google Scholar 

  • Kai M, Vespermann A, Piechulla B (2008) The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal Behav 3:1–3

    Article  Google Scholar 

  • Kai M, Crespo E, Cristescu SM, Harren FJM, Piechulla B (2010) Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 88:965–976

    Article  PubMed  CAS  Google Scholar 

  • Kataoka H, Lord HL, Pawliszyn J (2000) Applications of solid-phase microextraction in food analysis. J Chromatogr A 880:35–62

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  PubMed  CAS  Google Scholar 

  • Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J 26:1–12

    Article  Google Scholar 

  • Kurze S, Dahl R, Bahl H, Berg G (2001) Biological control of soil-borne pathogens in strawberry by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Article  Google Scholar 

  • Kwon YS, Ryu CM, Lee S, Park HB, Han KS, Lee JH, Lee K, Chung WS, Jeong MJ, Kim HK, Bae DW (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  PubMed  CAS  Google Scholar 

  • Larsen TO, Frisvad JC (1994) A simple method for collection of volatile metabolites from fungi based on diffusive sampling from Petri dishes. J Microbiol Methods 19:297–305

    Article  CAS  Google Scholar 

  • Losada M, Arnon DJ (1963) Selective inhibitors of photosynthesis. In: Hochster RM and Quasted JH (eds), Metabolic Inhibitors, vol 2. Academic, New York, pp 503–611

    Google Scholar 

  • Mayr D, Margesin R, Klingsbichel E, Hartungen E, Jenewein D, Märk TD Schinner F und (2003) Rapid detection of meat spoilage by measuring volatile organic compounds by using proton transfer reaction mass spectrometry. Appl Environ Microbiol 69:4697–4705

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Shinsi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Pollak FC, Berger RG (1996) Geosmin and related volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appl Environ Microbiol 62:1295–1299

    PubMed  CAS  Google Scholar 

  • Preti G, Thaler E, Hanson CW, Troy M, Eades J, Gelperin A (2009) Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B 877:2011

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Sou JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  PubMed  CAS  Google Scholar 

  • Rudrappa T, Splaine RE, Biedrzycki ML, Bais HP (2008) Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere. PLoS One 30:3(4), e2073

    Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138

    Article  PubMed  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Schöller CEG, Molin S, Wilkins K (1997) Volatile metabolites from some gram-negative bacteria. Chemosphere 35:1487–1495

    Article  PubMed  Google Scholar 

  • Schreier P (1980) Wine aroma composition: identification of additional volatile constituents in red wine. J Agric Food Chem 28:926–928

    Article  CAS  Google Scholar 

  • Schulz S, Fuhlendorff J, Reichenbach H (2004) Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60:3863–3872

    Article  CAS  Google Scholar 

  • Stotzky G, Schenck S (1976) Volatile organic compounds and microorganisms. CRC Critical Rev Microbiol 4:333–382

    Article  CAS  Google Scholar 

  • Thorn RMS, Reynolds DM, Greenman J (2010) Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J Microbiol Methods 84:258–264

    Article  PubMed  Google Scholar 

  • Urbach G (1997) The flavour of milk and dairy products: II. Cheese: contribution of volatile compounds. Intern J Dairy Technol 50:79–89

    Article  CAS  Google Scholar 

  • Valverde C, Haas D (2008) Small RNAs controlled by two-component systems. Adv Exp Med Biol 631:54–79

    Google Scholar 

  • Vergnais L, Masson F, Montel MC, Berdagué JL, Talon R (1998) Evaluation of solid-phase microextraction for analysis of volatile metabolites produced by Staphylococci. J Agric Food Chem 46:228–234

    Article  PubMed  CAS  Google Scholar 

  • Vespermann A, Kai M, Piechulla B (2007) Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl Environ Microbiol 73:5639–5641

    Article  PubMed  CAS  Google Scholar 

  • von Reuß S, Kai M, Piechulla B, Francke W (2010) Octamethylbicyclo(3.2.1)octadienes from Serratia odorifera. Angew Chem Int Ed 49:2009–2010

    Article  Google Scholar 

  • Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG (2006) Evidence that l-glutamate can act as endogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 47:1045–1057

    Article  PubMed  Google Scholar 

  • Walker TS, Bais HP, Deziel E, Schweitzer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formations, and root exudation. Plant Physiol 134:3210–3331

    Article  Google Scholar 

  • Weingart H, Völksch B (1997) Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. Appl Environ Microbiol 63:156–161

    PubMed  CAS  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav 4:948–953

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM, Allen R, Melo IS, Pare PW (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant–Microbe Interact 21:737–744

    Article  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare RW (2008b) Soil bacterium augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Pare RW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Pare PW (2010) Choline and osmotic-stress tolerance induced by the soil microbe Bacillus subtilis (GB03). Mol Plant–Microbe Interact 23:1097–1104

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Bean HD, Kuo YM, Hill JE (2010) Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization–mass spectrometry. J Clin Microbiol 48:4426–4431

    Article  PubMed  CAS  Google Scholar 

  • Zoller HF, Mansfield Clark W (1921) The production of volatile fatty acids by bacteria of the dysentery group. J Gen Physiol 3:325–330

    Article  PubMed  CAS  Google Scholar 

  • Zou CS, Mo MH, Gu YQ, Zhou JP, Zhang KQ (2007) Possible contribution of volatile-producing bacteria in soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Piechulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wenke, K. et al. (2012). Bacterial Volatiles Mediating Information Between Bacteria and Plants. In: Witzany, G., Baluška, F. (eds) Biocommunication of Plants. Signaling and Communication in Plants, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23524-5_17

Download citation

Publish with us

Policies and ethics