Skip to main content

Sculpting Our Future: Environmental Nudging of the Imprintome

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Over the past several decades, there has been a dramatic increase in awareness of the importance of epigenetics in the regulation of gene expression and how this relates to disease. The initial focus on cancer as a potential outcome of epigenetic alterations has grown to include the role of epigenetics in neurodevelopmental disorders, obesity, diabetes, memory, and even deviation in complex human social interactions. Prominent among the genes implicated in all of these conditions are those subject to genomic imprinting. These genes are regulated by epigenetic mechanisms, including DNA methylation that is established during early development and results in parent of origin dependent expression. Advances in the ability to accurately measure DNA methylation using high throughput techniques have now paved the way for study of this epigenetic modification in epidemiologic studies. In this chapter, we will examine the relationship of the early origins hypothesis to imprinted genes and how emerging studies strongly suggest that early origins may in part have its roots in epigenetic changes at these imprinted regulatory regions during early life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BWS:

Beckwith Wiedemann Syndrome

CDKN1C:

Cyclin-Dependent Kinase Inhibitor 1C

CTCF:

CCCTC Binding Factor

DLK1:

Delta Like 1 Homolog (Drosophila)

DMR:

Differentially Methylated Region

DNMT:

DNA Methyltransferase

GNAS:

Guanine Nucleotide Binding Protein (G protein) Alpha Stimulating Activity Polypeptide

GRB10:

Growth Factor Receptor-Bound Protein 10

H19:

Maternally Expressed H19

HYMAI:

Hydatidiform Mole Associated and Imprinted (Non-Protein Coding)

IGF1R:

Insulin-like Growth Factor Type I Receptor

IGF2:

Insulin-like Growth Factor II

KCNQ1OT1 KCNQ1:

Opposite Strand/Antisense Transcript (Non-Protein Coding)

MEG3:

Maternally Expressed Gene 3 (Non-Protein Coding)

MEST:

Mesoderm Specific Transcript Homolog (Mouse)

NDN:

Necdin

NEST:

Newborn Epigenetics STudy

NNAT:

Neuronatin

PLAGL1:

Pleomorphic Adenoma Gene-Like 1

PEG3:

Paternally Expressed Gene 3

SGCE:

Epsilon Sarcoglycan

SLC38A4:

Solute Carrier Family 38 Member 4

References

  • Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, Haladyniak U, Agbemenyah HY, Zovoilis A, Salinas-Riester G, Opitz L, Sananbenesi F, Fischer A (2011) A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J 30:4071–4083

    Article  PubMed  CAS  Google Scholar 

  • Ariel I, Ayesh S, Perlman EJ, Pizov G, Tanos V, Schneider T, Erdmann VA, Podeh D, Komitowski D, Quasem AS, de Groot N, Hochberg A (1997) The product of the imprinted H19 gene is an oncofetal RNA. Mol Pathol 50:34–44

    Article  PubMed  CAS  Google Scholar 

  • Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, Oshimura M, Soejima H, Mukai T, Wake N (2005) Zac, lit1 (kcnq1ot1) and p57kip2 (cdkn1c) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 33:2650–2660

    Article  PubMed  CAS  Google Scholar 

  • Ba Y, Yu H, Liu F, Geng X, Zhu C, Zhu Q, Zheng T, Ma S, Wang G, Li Z, Zhang Y (2011) Relationship of folate, vitamin b(12) and methylation of insulin-like growth factor-ii in maternal and cord blood. Eur J Clin Nutr 65:480–485

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (1988) Childhood causes of adult diseases. Arch Dis Child 63:867–869

    Article  PubMed  CAS  Google Scholar 

  • Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23:588S–595S

    Article  PubMed  CAS  Google Scholar 

  • Bellinger DC, Stiles KM, Needleman HL (1992) Low-level lead exposure, intelligence and academic achievement: a long-term follow-up study. Pediatrics 90:855–861

    PubMed  CAS  Google Scholar 

  • Berg JS, Lin KK, Sonnet C, Boles NC, Weksberg DC, Nguyen H, Holt LJ, Rickwood D, Daly RJ, Goodell MA (2011) Imprinted genes that regulate early mammalian growth are coexpressed in somatic stem cells. PLoS One 6:e26410

    Article  PubMed  CAS  Google Scholar 

  • Bird A (1987) Cpg islands as gene markers in the vertebrate nucleus. Trends Genet 3:342–347

    Article  CAS  Google Scholar 

  • Brubaker CJ, Dietrich KN, Lanphear BP, Cecil KM (2010) The influence of age of lead exposure on adult gray matter volume. Neurotoxicology 31:259–266

    Article  PubMed  CAS  Google Scholar 

  • Canfield RL, Henderson CR Jr, Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP (2003) Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 348:1517–1526

    Article  PubMed  CAS  Google Scholar 

  • Cecil KM, Brubaker CJ, Adler CM, Dietrich KN, Altaye M, Egelhoff JC, Wessel S, Elangovan I, Hornung R, Jarvis K, Lanphear BP (2008) Decreased brain volume in adults with childhood lead exposure. PLoS Med 5:e112

    Article  PubMed  Google Scholar 

  • Chacon MR, Miranda M, Jensen CH, Fernandez-Real JM, Vilarrasa N, Gutierrez C, Naf S, Gomez JM, Vendrell J (2008) Human serum levels of fetal antigen 1 (fa1/dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro. Int J Obes 32:1122–1129

    Article  CAS  Google Scholar 

  • Champagne FA, Curley JP, Swaney WT, Hasen NS, Keverne EB (2009) Paternal influence on female behavior: the role of peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav Neurosci 123:469–480

    Article  PubMed  Google Scholar 

  • Chao W, D’Amore PA (2008) Igf2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19:111–120

    Article  PubMed  CAS  Google Scholar 

  • Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–497

    Article  PubMed  CAS  Google Scholar 

  • Curley JP, Pinnock SB, Dickson SL, Thresher R, Miyoshi N, Surani MA, Keverne EB (2005) Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene peg3. FASEB J 19:1302–1304

    PubMed  CAS  Google Scholar 

  • Dietrich KN, Ris MD, Succop PA, Berger OG, Bornschein RL (2001) Early exposure to lead and juvenile delinquency. Neurotoxicol Teratol 23:511–518

    Article  PubMed  CAS  Google Scholar 

  • Dietz PM, Homa D, England LJ, Burley K, Tong VT, Dube SR, Bernert JT (2011) Estimates of nondisclosure of cigarette smoking among pregnant and nonpregnant women of reproductive age in the United States. Am J Epidemiol 173:355–359

    Article  PubMed  Google Scholar 

  • Docherty LE, Poole RL, Mattocks CJ, Lehmann A, Temple IK, Mackay DJ (2010) Further refinement of the critical minimal genetic region for the imprinting disorder 6q24 transient neonatal diabetes. Diabetologia 53:2347–2351

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol a-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  • Doria S, Sousa M, Fernandes S, Ramalho C, Brandao O, Matias A, Barros A, Carvalho F (2010) Gene expression pattern of IGF2, PHLDA2, PEG10 and CDKN1C imprinted genes in spontaneous miscarriages or fetal deaths. Epigenetics 5:444–450

    Article  PubMed  CAS  Google Scholar 

  • Drake NM, DeVito LM, Cleland TA, Soloway PD (2011) Imprinted rasgrf1 expression in neonatal mice affects olfactory learning and memory. Genes Brain Behav 10:392–403

    Article  PubMed  CAS  Google Scholar 

  • Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    Article  PubMed  CAS  Google Scholar 

  • Enklaar T, Zabel BU, Prawitt D (2006) Beckwith-Wiedemann syndrome: multiple molecular mechanisms. Expert Rev Mol Med 8:1–19

    Article  PubMed  Google Scholar 

  • Ferron SR, Charalambous M, Radford E, McEwen K, Wildner H, Hind E, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Farinas I, Ferguson-Smith AC (2011) Postnatal loss of dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385

    Article  PubMed  CAS  Google Scholar 

  • Forsdahl A (1977) Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med 31:91–95

    PubMed  CAS  Google Scholar 

  • Fradin D, Cheslack-Postava K, Ladd-Acosta C, Newschaffer C, Chakravarti A, Arking DE, Feinberg A, Fallin MD (2010) Parent-of-origin effects in autism identified through genome-wide linkage analysis of 16,000 SNPS. PLoS One 5:e12513

    Article  PubMed  Google Scholar 

  • Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forne T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L (2009) H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421

    Article  PubMed  CAS  Google Scholar 

  • Gibson TM, Weinstein SJ, Pfeiffer RM, Hollenbeck AR, Subar AF, Schatzkin A, Mayne ST, Stolzenberg-Solomon R (2011) Pre- and postfortification intake of folate and risk of colorectal cancer in a large prospective cohort study in the United States. Am J Clin Nutr 94:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Grantham-McGregor SM (1998) Small for gestational age, term babies, in the first six years of life. Eur J Clin Nutr 52(Suppl 1):S59–S64

    PubMed  Google Scholar 

  • Guffanti G, Strik Lievers L, Bonati MT, Marchi M, Geronazzo L, Nardocci N, Estienne M, Larizza L, Macciardi F, Russo S (2011) Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: a positive replication for UBE3A. Psychiatry Res 185:33–38

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  • Hornung RW, Lanphear BP, Dietrich KN (2009) Age of greatest susceptibility to childhood lead exposure: a new statistical approach. Environ Health Perspect 117:1309–1312

    PubMed  CAS  Google Scholar 

  • Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, Iversen ES, Kurtzberg J, Overcash F, Huang Z, Murphy SK (2011) Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics 6:928–936

    Article  PubMed  CAS  Google Scholar 

  • Issa JP (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13:1634–1637

    Article  PubMed  CAS  Google Scholar 

  • Joe MK, Lee HJ, Suh YH, Han KL, Lim JH, Song J, Seong JK, Jung MH (2008) Crucial roles of neuronatin in insulin secretion and high glucose-induced apoptosis in pancreatic beta-cells. Cell Signal 20:907–915

    Article  PubMed  CAS  Google Scholar 

  • Kato C, Tochigi M, Ohashi J, Koishi S, Kawakubo Y, Yamamoto K, Matsumoto H, Hashimoto O, Kim SY, Watanabe K, Kano Y, Nanba E, Kato N, Sasaki T (2008) Association study of the 15q11-q13 maternal expression domain in Japanese autistic patients. Am J Med Genet B Neuropsychiatr Genet 147B:1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Byrd JC, Jirtle JV, Munday BL, Stoskopf MK, MacDonald RG, Jirtle RL (2000) M6P/IGF2R imprinting evolution in mammals. Mol Cell 5:707–716

    Article  PubMed  CAS  Google Scholar 

  • Kim YI (2007) Folic acid fortification and supplementation–good for some but not so good for others. Nutr Rev 65:504–511

    Article  PubMed  Google Scholar 

  • Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, Skaf J, Kozak LP (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2:e81

    Article  PubMed  Google Scholar 

  • Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA (2010) The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 5:e11015

    Article  PubMed  Google Scholar 

  • Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, Canfield RL, Dietrich KN, Bornschein R, Greene T, Rothenberg SJ, Needleman HL, Schnaas L, Wasserman G, Graziano J, Roberts R (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113:894–899

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 20:163–169

    Article  PubMed  CAS  Google Scholar 

  • LeRoith D, Lowe WLJ (2005) Growth factors. In: Melmed S, Conn MP (eds) Endocrinology: basic and clinical principles. Humana Press, Totowa, pp 85–91

    Google Scholar 

  • Li L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–333

    Article  PubMed  CAS  Google Scholar 

  • Li X, Thomason PA, Withers DJ, Scott J (2010) Bio-informatics analysis of a gene co-expression module in adipose tissue containing the diet-responsive gene NNAT. BMC Syst Biol 4:175

    Article  PubMed  CAS  Google Scholar 

  • Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Lui JC, Finkielstain GP, Barnes KM, Baron J (2008) An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol 295:R189–R196

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Shield JP, Dean W, Leclerc I, Knauf C, Burcelin RR, Rutter GA, Kelsey G (2004) Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 114:339–348

    PubMed  CAS  Google Scholar 

  • Mazumdar M, Bellinger DC, Gregas M, Abanilla K, Bacic J, Needleman HL (2011) Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ Health 10:24

    Article  PubMed  CAS  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139:287–301

    Article  PubMed  CAS  Google Scholar 

  • Monk M (1988) Genomic imprinting. Genes Dev 2:921–925

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    PubMed  CAS  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    Article  PubMed  CAS  Google Scholar 

  • Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schilder JM, Murtha AP, Iversen ES, Hoyo C (2011) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494(1):36–43

    Article  PubMed  Google Scholar 

  • Nomura Y, Marks DJ, Halperin JM (2010) Prenatal exposure to maternal and paternal smoking on attention deficit hyperactivity disorders symptoms and diagnosis in offspring. J Nerv Ment Dis 198:672–678

    Article  PubMed  Google Scholar 

  • Nurmi EL, Amin T, Olson LM, Jacobs MM, McCauley JL, Lam AY, Organ EL, Folstein SE, Haines JL, Sutcliffe JS (2003) Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism. Mol Psychiatry 8:624–634

    Article  PubMed  CAS  Google Scholar 

  • O’Connell J, Lynch L, Hogan A, Cawood TJ, O’Shea D (2011) Preadipocyte factor-1 is associated with metabolic profile in severe obesity. J Clin Endocrinol Metab 96:E680–E684

    Article  PubMed  Google Scholar 

  • Onyango P, Feinberg AP (2011) A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci USA 108:16759–16764

    Article  PubMed  CAS  Google Scholar 

  • Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19:257–265

    Article  PubMed  CAS  Google Scholar 

  • Paradis AD, Fitzmaurice GM, Koenen KC, Buka SL (2011) Maternal smoking during pregnancy and criminal offending among adult offspring. J Epidemiol Community Health 65:1145–1150

    Article  PubMed  Google Scholar 

  • Pask AJ, Papenfuss AT, Ager EI, McColl KA, Speed TP, Renfree MB (2009) Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 10:R1

    Article  PubMed  Google Scholar 

  • Perkins E, Murphy SK, Murtha AP, Schildkraut J, Jirtle RL, Demark-Wahnefried W, Forman MR, Kurtzberg J, Overcash F, Huang Z, Hoyo C (2012) Insulin-Like Growth Factor 2/H19 methylation at birth and risk of overweight and obesity in children. J Pediatr 161:31–39

    Google Scholar 

  • Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, Lazarus A, Lamadrid-Figueroa H, Mercado-Garcia A, Tellez-Rojo MM, Hernandez-Avila M (2009) Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect 117:1466–1471

    PubMed  CAS  Google Scholar 

  • Pitkin RM (2007) Folate and neural tube defects. Am J Clin Nutr 85:285S–288S

    PubMed  CAS  Google Scholar 

  • Pliushch G, Schneider E, Weise D, El Hajj N, Tresch A, Seidmann L, Coerdt W, Muller AM, Zechner U, Haaf T (2010) Extreme methylation values of imprinted genes in human abortions and stillbirths. Am J Pathol 176:1084–1090

    Article  PubMed  CAS  Google Scholar 

  • Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Article  PubMed  Google Scholar 

  • Sandhu KS, Shi C, Sjolinder M, Zhao Z, Gondor A, Liu L, Tiwari VK, Guibert S, Emilsson L, Imreh MP, Ohlsson R (2009) Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev 23:2598–2603

    Article  PubMed  CAS  Google Scholar 

  • Sauer J, Mason JB, Choi SW (2009) Too much folate: a risk factor for cancer and cardiovascular disease? Curr Opin Clin Nutr Metab Care 12:30–36

    Article  PubMed  CAS  Google Scholar 

  • Sciberras E, Ukoumunne OC, Efron D (2011) Predictors of parent-reported attention-deficit/hyperactivity disorder in children aged 6–7 years: a national longitudinal study. J Abnorm Child Psychol 39:1025–1034

    Article  PubMed  Google Scholar 

  • Sleutels F, Barlow DP (2002) The origins of genomic imprinting in mammals. Adv Genet 46:119–163

    Article  PubMed  CAS  Google Scholar 

  • Solomons NW (2007) Food fortification with folic acid: has the other shoe dropped? Nutr Rev 65:512–515

    Article  PubMed  Google Scholar 

  • Soubry A, Murphy SK, Huang Z, Murtha A, Schildkraut JM, Jirtle RL, Wang F, Kurtzberg J, Demark-Wahnefried W, Forman MR, Hoyo C (2011) The effects of depression and use of antidepressive medicines during pregnancy on the methylation status of the IGF2 imprint control regions in the offspring. Clin Epigenetics 3:2

    Article  PubMed  CAS  Google Scholar 

  • Stewart WH (1967) In: Health EaW (ed) The health consequences of smoking: a public health service review. United States, Public Health Service, Office of the Surgeon General, Washington, DC

    Google Scholar 

  • Susser E, Neugebauer R, Hoek HW, Brown AS, Lin S, Labovitz D, Gorman JM (1996) Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 53:25–31

    Article  PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CPG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    Article  PubMed  CAS  Google Scholar 

  • Tobi EW, Heijmans BT, Kremer D, Putter H, Delemarre-van de Waal HA, Finken MJ, Wit JM, Slagboom PE (2011) DNA methylation of igf2, gnasas, insigf and lep and being born small for gestational age. Epigenetics 6:171–176

    Article  PubMed  CAS  Google Scholar 

  • Trasande L, Chatterjee S (2009) The impact of obesity on health service utilization and costs in childhood. Obesity 17:1749–1754

    Article  PubMed  Google Scholar 

  • Udeh BL, Losch ME (2008) Tobacco & low birth weight cost analysis: CSBR white paper #2. Iowa Department of Public Health, Des Moines, pp 1–37

    Google Scholar 

  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L (2006) Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711–722

    Article  PubMed  CAS  Google Scholar 

  • Vrang N, Meyre D, Froguel P, Jelsing J, Tang-Christensen M, Vatin V, Mikkelsen JD, Thirstrup K, Larsen LK, Cullberg KB, Fahrenkrug J, Jacobson P, Sjostrom L, Carlsson LM, Liu Y, Liu X, Deng HW, Larsen PJ (2010) The imprinted gene neuronatin is regulated by metabolic status and associated with obesity. Obesity 18:1289–1296

    Article  PubMed  Google Scholar 

  • Wadhwa PD, Buss C, Entringer S, Swanson JM (2009) Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27:358–368

    Article  PubMed  CAS  Google Scholar 

  • Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grutzner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, Lopez-Otin C, Ordonez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefevre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  • Wilkin F, Paquette J, Ledru E, Hamelin C, Pollak M, Deal CL, Mamelin C (2000) H19 sense and antisense transgenes modify insulin-like growth factor-II mRNA levels. Eur J Biochem 267:4020–4027

    Article  PubMed  CAS  Google Scholar 

  • Wilkins JF, Ubeda F (2011) Diseases associated with genomic imprinting. Prog Mol Biol Transl Sci 101:401–445

    Article  PubMed  CAS  Google Scholar 

  • Wright JP, Dietrich KN, Ris MD, Hornung RW, Wessel SD, Lanphear BP, Ho M, Rae MN (2008) Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med 5:e101

    Article  PubMed  Google Scholar 

  • Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, Hu H, Sparrow D, Vokonas P, Baccarelli A (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 118:790–795

    Article  PubMed  CAS  Google Scholar 

  • Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, Dandolo L (2008) The h19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA 105:12417–12422

    Article  PubMed  CAS  Google Scholar 

  • Zakharova IS, Shevchenko AI, Zakian SM (2009) Monoallelic gene expression in mammals. Chromosoma 118:279–290

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Tavoosidana G, Sjolinder M, Gondor A, Mariano P, Wang S, Kanduri C, Lezcano M, Sandhu KS, Singh U, Pant V, Tiwari V, Kurukuti S, Ohlsson R (2006) Circular chromosome conformation capture (4c) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the participants of the Newborn Epigenetics STudy and gratefully acknowledge the NEST support staff for their hard work and dedication to the project. This research was supported by National Institutes of Health grants R21ES014947, R01ES016772, and R01DK085173 and by funding from the Duke Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murphy, S.K., Hoyo, C. (2013). Sculpting Our Future: Environmental Nudging of the Imprintome. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23380-7_3

Download citation

Publish with us

Policies and ethics