Skip to main content

Advertisement

Log in

Monoallelic gene expression in mammals

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Three systems of monoallelic gene expression in mammals are known, namely, X-chromosome inactivation, imprinting, and allelic exclusion. In all three systems, monoallelic expression is regulated epigenetically and is frequently directed by long non-coding RNAs (ncRNAs). This review briefs all three systems of monoallelic gene expression in mammals focusing on chromatin modifications, spatial chromosome organization in the nucleus, and the functioning of ncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afshar R, Pierce S, Bolland DJ, Corcoran A, Oltz EM (2006) Regulation of IgH gene assembly: role of the intronic enhancer and 50DQ52 region in targeting DHJH recombination. J Immunol 176:2439–2447

    PubMed  CAS  Google Scholar 

  • Alexander MK, Mlynarczyk-Evans S, Royce-Tolland M, Plocik A, Kalantry S, Magnuson T, Panning B (2007) Differences between homologous alleles of olfactory receptor genes require the Polycomb Group protein Eed. J Cell Biol 179:269–276

    Article  PubMed  CAS  Google Scholar 

  • Augui S, Filion GJ, Huar S, Nora E, Guggiari M, Maresca M, Stewart AF, Heard E (2007) Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318:1632–1636

    Article  PubMed  CAS  Google Scholar 

  • Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8:293–299

    Article  PubMed  CAS  Google Scholar 

  • Barlow DP (1997) Competition—a common motif for the imprinting mechanism? EMBO J 16:6899–6905

    Article  PubMed  CAS  Google Scholar 

  • Bartova E, Kozubek S (2006) Nuclear architecture in the light of gene expression and cell differentiation studies. Biol Cell 98:323–336

    Article  PubMed  CAS  Google Scholar 

  • Bassing CH, Swat W, Alt FW (2002) The mechanism and regulation of chromosomal V(D)J recombination. Cell 109:S45–S55

    Article  PubMed  CAS  Google Scholar 

  • Beechey CV, Cattanach BM, Blake A, Peters J (2008) MRC Harwell, Oxfordshire. Mouse imprinting data and references. http://www.har.mrc.ac.uk/research/genomic_imprinting/

  • Blank RD, Campbell GR, Calabro A, D’Eustachio P (1988) A linkage map of mouse chromosome 12: localization of IgH and effects of sex and interference on recombination. Genetics 120:1073–1083

    PubMed  CAS  Google Scholar 

  • Bolland DJ, Wood AL, Johnston CM, Bunting SF, Morgan G, Chakalova L, Fraser PJ, Corcoran AE (2004) Antisense intergenic transcription in V(D)J recombination. Nat Immunol 5:630–637

    Article  PubMed  CAS  Google Scholar 

  • Bolland DJ, Wood AL, Afshar R, Featherstone K, Oltz EM, Corcoran AE (2007) Antisense intergenic transcription precedes Igh D-to-J recombination and is controlled by the intronic enhancer Emu. Mol Cell Biol 27:5523–5533

    Article  PubMed  CAS  Google Scholar 

  • Cedar H, Bergman Y (2008) Choreography of Ig allelic exclusion. Curr Opin Immunol 20:1–10

    Article  CAS  Google Scholar 

  • Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237

    Article  PubMed  CAS  Google Scholar 

  • Chess A, Simon I, Cedar H, Alex R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78:823–834

    Article  PubMed  CAS  Google Scholar 

  • Chow JC, Hall LL, Clemson CM, Lawrence JB, Brown CJ (2003) Characterization of expression at the human XIST locus in somatic, embryonal carcinoma, and transgenic cell lines. Genomics 82:309–322

    Article  PubMed  CAS  Google Scholar 

  • Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB (2006) The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced non-genic sequences. Proc Natl Acad Sci USA 103:7688–7693

    Article  PubMed  CAS  Google Scholar 

  • Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14:188–195

    Article  PubMed  CAS  Google Scholar 

  • Engemann S, Strodicke M, Paulsen M, Franck O, Reinhardt R, Lane N, Reik W, Walter J (2000) Sequence and functional comparison in the Beckwith–Wiedemann region: implications for a novel imprinting centre and extended imprinting. Hum Mol Genet 9:2691–2706

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick GV, Pugacheva EM, Shin JY, Abdullaev Z, Yang Y, Khatod K, Lobanenkov VV, Higgins MJ (2007) Allele-specific binding of CTCF to the multipartite imprinting control region KvDMR1. Mol Cell Biol 27:2636–2647

    Article  PubMed  CAS  Google Scholar 

  • Foster H, Bridger J (2005) The genome and the nucleus: a marriage made by evolution. Genome organization and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG (2000) The RAG proteins and V(D)J recombination: complexes ends and transcription. Annu Rev Immunology 18:495–537

    Article  CAS  Google Scholar 

  • Fuss SH, Omura M, Mombaerts P (2007) Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130:373–384

    Article  PubMed  CAS  Google Scholar 

  • Gimelbrant A, Hutchinson JN, Thompson BR, Chess A (2007) Widespread monoallelic expression on human autosomes. Science 318:1136–1140

    Article  PubMed  CAS  Google Scholar 

  • Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11:685–702

    Article  PubMed  CAS  Google Scholar 

  • Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci USA 101:2156–2161

    Article  PubMed  CAS  Google Scholar 

  • Goldmit M, Bergman Y (2004) Monoallelic gene expression: a repertoire of recurrent themes. Immunol Rev 200:197–214

    Article  PubMed  CAS  Google Scholar 

  • Goldmit M, Yanhong J, Skok J, Roldan E, Jung S, Cedar H, Bergman Y (2005) Epigenetic ontogeny of the ҝ-locus during B-cell development. Nat Immunol 6:198–203

    Article  PubMed  CAS  Google Scholar 

  • Goren A, Cedar H (2003) Replicating by the clock. Nat Rev Mol Cell Biol 4:25–32

    Article  PubMed  CAS  Google Scholar 

  • Gribnau J, Hochedlinger K, Hata K, Li E, Jaenisch R (2003) Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev 17:759–773

    Article  PubMed  CAS  Google Scholar 

  • Heard E (2005) Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr Opin Genet Dev 15:482–489

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Disteche CM (2006) Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 20:1848–1867

    Article  PubMed  CAS  Google Scholar 

  • Hemberger M, Redies C, Krause R, Oswald J, Walter J, Fundele RH (1998) H19 and Igf2 are expressed and differentially imprinted in neuroectoderm-derived cells in the mouse brain. Dev Genes Evol 208:393–402

    Article  PubMed  CAS  Google Scholar 

  • Hesslein DG, Schatz DG (2001) Factors and forces controlling V(D)J recombination. Adv Immunol 78:169–232

    Article  PubMed  CAS  Google Scholar 

  • Kambere MB, Lane RP (2007) Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes. BMC Neurosci 8:S2

    Article  PubMed  CAS  Google Scholar 

  • Kanduri C, Thakur N, Pandey R (2006) The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 25:2096–2106

    Article  PubMed  CAS  Google Scholar 

  • Khor B, Sleckman BP (2002) Allelic exclusion at the TCRbeta locus. Curr Opin Immunol 14:230–234

    Article  PubMed  CAS  Google Scholar 

  • Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2:E171

    Article  PubMed  Google Scholar 

  • Krangel MS (2003) Gene segment selection in V(D)J recombination: accessibility and beyond. Nat Immunol 4:624–630

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Lu N (1999) Targeted mutagenesis of Tsix leads to non-random X inactivation. Cell 99:47–57

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21:400–404

    Article  PubMed  CAS  Google Scholar 

  • Lefranc MP, Clement O, Kaas Q, Duprat E, Chastellan P, Coelho I, Combres K, Ginestoux C, Giudicelli V, Chaume D, Lefranc G (2005) IMGT-Choreography for immunogenetics and immunoinformatics. In Silico Biol 5:45–60

    PubMed  CAS  Google Scholar 

  • Lewis A, Mitsuya K, Umlauf D, Smith P, Dean W (2004) Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet 36:1291–1295

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Gupta V, VerMilyea MD, Falciani F, Lee JT (2007) Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol 5:e326

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Widlak P, Zou Y, Xiao F, Oh M, Li S, Chang MY, Shay JW, Garrard WT (2006) A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 24:405–415

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Subrahmanyam R, Chakrabborty T, Sen R, Desiderio S (2007) A plant homeodomain in RAG2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27:561–571

    Article  PubMed  CAS  Google Scholar 

  • Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126:403–413

    Article  PubMed  CAS  Google Scholar 

  • Luikenhuis S, Wutz A, Jaenisch R (2001) Antisense transcription through the Xist locus mediates Tsix function in embryonic stem cells. Mol Cell Biol 21:8512–8520

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Godfrey PA, Buck L (2004) The human olfactory receptor gene family. Proc Natl Acad Sci USA 101:2584–2589

    Article  PubMed  CAS  Google Scholar 

  • Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM (2006) Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 20:1268–1282

    Article  PubMed  CAS  Google Scholar 

  • Matthews AG, Kuo AJ, Ramón-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA (2007) RAG2 PDH finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450:1106–1110

    Article  PubMed  CAS  Google Scholar 

  • Migeon BR, Lee CH, Chowdhury AK, Carpenter H (2002) Species differences in TSIX/Tsix reveal the roles of these genes in X-chromosome inactivation. Am J Hum Genet 71:286–293

    Article  PubMed  CAS  Google Scholar 

  • Mohammad F, Pandey RR, Nagano T, Chakalova L, Mondal T, Fraser P, Kanduri C (2008) Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol 28:3713–3728

    Article  PubMed  CAS  Google Scholar 

  • Mostoslavsky R, Singh N, Tenzen T, Goldmit M, Gabay C, Elizur S, Qi P, Reubinoff BE, Chess A, Cedar H, Bergman Y (2001) Asynchronous replication and allelic exclusion in the immune system. Nature 414:221–225

    Article  PubMed  CAS  Google Scholar 

  • Murakami K, Oshimura M, Kugoh H (2007) Suggestive evidence for chromosomal localization of non-coding RNA from imprinted LIT1. J Hum Genet 52:926–933

    Article  PubMed  CAS  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Pichard S, Ciaudo C, Avner P, Rougeulle C (2005) Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 19:1474–1484

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Page DR, Avner P, Rougeulle C (2006) Tsix mediated epigenetic switch of a CTCF-flanked region of the Xist promoter determines the Xist transcription program. Genes Dev 20:2787–2792

    Article  PubMed  CAS  Google Scholar 

  • Nesterova TB, Popova BC, Cobb BS, Norton S, Senner CE, Tang YA, Spruce T, Rodriguez TA, Sado T, Merkenschlager M, Brockdorff N (2008) Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics Chromatin 1:2

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320:1336–1341

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Hedborg F, Holmgren L, Walsh C, Ekstrom TJ (1994) Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 120:361–368

    PubMed  CAS  Google Scholar 

  • O’Neill MJ (2005) The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum Mol Genet 14:113–120

    Article  CAS  Google Scholar 

  • Oudejans CB, Westerman B, Wouters D, Gooyer S, Leegwater PA, van Wijk IJ, Sleutels F (2001) Allelic IGF2R repression does not correlate with expression of antisence RNA in human extraembrionic tissue. Genomics 73:331–337

    Article  PubMed  CAS  Google Scholar 

  • Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246

    Article  PubMed  CAS  Google Scholar 

  • Parada LA, Sotiriou S, Misteli T (2004) Spatial genome organization. Exp Cell Res 296:64–70

    Article  PubMed  CAS  Google Scholar 

  • Pauler FM, Koerner MV, Barlow DP (2007) Silencing by imprinted non-coding RNAs: is transcription the answer? Trends Genet 23:284–292

    Article  PubMed  CAS  Google Scholar 

  • Perlot T, Alt FW, Bassing CH, Suh H, Pinaud E (2005) Elucidation of IgH intronic enhancer functions via germ-line deletion. Proc Natl Acad Sci USA 102:14362–14367

    Article  PubMed  CAS  Google Scholar 

  • Ramon-Maiques S, Kuo AJ, Carney D, Matthews AG, Oettinger MA, Gozani O, Yang W (2007) The plant homeodomain finger of RAG2 recognises histone H3 methylated at both lysine-4 and argentine-2. Proc Natl Acad Sci USA 104:18993–18998

    Article  PubMed  Google Scholar 

  • Reik W, Maher ER (1997) Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome. Trends Genet 13:330–334

    Article  PubMed  CAS  Google Scholar 

  • Riesewijk AM, Schepens MT, Welch TR, van den Berg-Loonen EM, Mariman EM, Ropers HH, Kalscheuer VM (1996) Maternal-specific methylation of the human IGF2R gene is not accompanied by allele-specific transcription. Genomics 31:158–166

    Article  PubMed  CAS  Google Scholar 

  • Rougeulle C, Heard E (2002) Antisense RNA in imprinting: spreading silence through Air. Trends Genet 18:434–437

    Article  PubMed  CAS  Google Scholar 

  • Sado T, Wang Z, Sasaki H, Li E (2001) Regulation of imprinted X-chromosome inactivation in mice by Tsix. Development 128:1275–1286

    PubMed  CAS  Google Scholar 

  • Sado T, Hoki Y, Sasaki H (2005) Tsix silences Xist through modification of chromatin structure. Dev Cell 9:159–165

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JV, Levorse JM, Tilghman SM (1999) Enhancer competition between H19 and Igf2 does not mediate their imprinting. Proc Natl Acad Sci USA 96:9733–9738

    Article  PubMed  CAS  Google Scholar 

  • Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094

    Article  PubMed  CAS  Google Scholar 

  • Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21:339–345

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Wutz A (2008) Transcript versus transcription? Epigenetics 3:246–249

    PubMed  Google Scholar 

  • Shin JY, Fitzpatrick GV, Higgins MJ (2008) Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 27:168–178

    Article  PubMed  CAS  Google Scholar 

  • Simon I, Tenzen T, Reubinoff BE, Hillman D, McCarrey JR, Cedar H (1999) Asynchronous replication of imprinted genes is established in the gametes maintained during development. Nature 401:929–932

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Ebrahimi FAW, Gimelbrant AA, Ensminger AW, Tackett MR, Qi P, Gribnau J, Chess A (2003) Coordination of the random asynchronous replication of autosomal loci. Nat Genet 33:1–3

    Article  CAS  Google Scholar 

  • Sleutels F, Zwart R, Barlow DP (2002) The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–813

    PubMed  CAS  Google Scholar 

  • Sleutels F, Tjon G, Ludwig T, Barlow DP (2003) Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air. EMBO J 22:3696–3704

    Article  PubMed  CAS  Google Scholar 

  • Smrzka OW, Fae I, Stoger R, Kurzbauer R, Fischer GF, Henn T, Weith A, Barlow DP (1995) Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum Mol Genet 4:1945–1952

    Article  PubMed  CAS  Google Scholar 

  • Stavropoulos N, Lu N, Lee JT (2001) A functional role for Tsix transcription in blocking Xist RNA accumulation but not in X-chromosome choice. Proc Natl Acad Sci USA 98:10232–10237

    Article  PubMed  CAS  Google Scholar 

  • Stoger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal specific methylation of imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71

    Article  PubMed  CAS  Google Scholar 

  • Sun BK, Deaton AM, Lee JT (2006) A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 21:617–628

    Article  PubMed  CAS  Google Scholar 

  • Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH, Peters AH (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679

    Article  PubMed  CAS  Google Scholar 

  • Thakur N, Tiwari VK, Thomassin H, Pandey RR, Kanduri M, Göndör A, Grange T, Ohlsson R, Kanduri C (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862

    Article  PubMed  CAS  Google Scholar 

  • Tsai CL, Rowntree RK, Cohen DE, Lee JT (2008) Higher order chromatin structure at the X-inactivation center via looping DNA. Dev Biol 319:416–425

    Article  PubMed  CAS  Google Scholar 

  • Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R (2004) Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36:1296–1300

    Article  PubMed  CAS  Google Scholar 

  • Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579:5872–5878

    Article  PubMed  CAS  Google Scholar 

  • Vu TH, Li T, Hoffman AR (2004) Promoter-restricted histone code, not the differentially methylated DNA regions or antisense transcripts, marks the imprinting status of IGF2R in human and mouse. Hum Mol Genet 13:2233–2245

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger M (2005) The role of the RNAi machinery in heterochromatin formation. Cell 122:13–16

    Article  PubMed  CAS  Google Scholar 

  • Weksberg R, Shen DR, Fei YL, Song QL, Squire J (1993) Disruption of insulin-like growth factor 2 imprinting in Beckwith–Wiedemann syndrome. Nat Genet 5:143–150

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Jaenisch R (2000) A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol Cell 5:695–705

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30:167–174

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311:1149–1152

    Article  PubMed  CAS  Google Scholar 

  • Xu N, Donohoe ME, Silva SS, Lee JT (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki Y, Kayashima T, Soejima H, Kinoshita A, Yoshiura K, Matsumoto N, Ohta T, Urano T, Masuzaki H, Ishimaru T, Mukai T, Niikawa N, Kishino T (2005) Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum Mol Genet 14:2511–2520

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF, Huynh KD, Lee JT (2007) Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129:693–706

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. L.V. Vysotskaya (Novosibirsk State University, Russia) and Prof. E.S. Belyaeva (Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia) for helpful comments and discussion. We are grateful to Claire Senner for valuable comments and suggestions. The work was funded by grant no. 08-04-00346 from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suren M. Zakian.

Additional information

Communicated by V. Zakian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharova, I.S., Shevchenko, A.I. & Zakian, S.M. Monoallelic gene expression in mammals. Chromosoma 118, 279–290 (2009). https://doi.org/10.1007/s00412-009-0206-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-009-0206-8

Keywords

Navigation