Skip to main content

Adaptive Immunity and Spaceflight

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Spaceflight causes alterations in human immunity, a finding which has been well documented immediately following spaceflight. Limited in-flight studies have also confirmed that to some degree immunity is compromised during spaceflight. A comprehensive understanding of the nature of these immune changes is lacking. This chapter reviews the current evidence regarding spaceflight effects on the function of the adaptive immune system, and speculates on potential adverse clinical outcomes and likely countermeasures. Potential causes for these alterations are discussed elsewhere in this volume (Chap. 9), as are spaceflight effects on the function of the innate immune system (Chap. 10).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boonyaratanakornkit JB, Cogoli A, Li CF, Schopper T, Pippia P, Galleri G et al (2005) Key gravity-sensitive signaling pathways drive T cell activation. FASEB J 19(14):2020–2022

    PubMed  CAS  Google Scholar 

  • Buravkova LB, Rykova MP, Grigorieva V, Antropova EN (2004) Cell interactions in microgravity: cytotoxic effects of natural killer cells in vitro. J Gravit Physiol 11(2):P177–P180

    PubMed  CAS  Google Scholar 

  • Chapes SK, Morrison DR, Guikema JA, Lewis ML, Spooner BS (1994) Production and action of cytokines in space. Adv Space Res 14(8):5–9

    Article  PubMed  CAS  Google Scholar 

  • Chouker A, Morukov B, Sams C (2008) Clinical immunology in new frontiers. Scientific American Presents: looking up, Europe’s quiet revolution in microgravity research:24–31

    Google Scholar 

  • Cogoli A (1993) The effect of space flight on human cellular immunity. Environ Med 37(2):107–116

    PubMed  CAS  Google Scholar 

  • Cogoli A (1997) Signal transduction in T lymphocytes in microgravity. Gravit Space Biol Bull 10(2):5–16

    PubMed  CAS  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225(4658):228–230

    Article  PubMed  CAS  Google Scholar 

  • Cooper D, Pellis NR (1998) Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol 63(5):550–562

    PubMed  CAS  Google Scholar 

  • Crucian B, Sams C (2009) Immune system dysregulation during spaceflight: clinical risk for exploration-class missions. J Leukoc Biol 86(5):1017–1018

    Article  PubMed  CAS  Google Scholar 

  • Crucian BE, Cubbage ML, Sams CF (2000) Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight. J Interferon Cytokine Res 20(6):547–556

    Article  PubMed  CAS  Google Scholar 

  • Crucian BE, Stowe RP, Pierson DL, Sams CF (2008) Immune system dysregulation following short- vs long-duration spaceflight. Aviat Space Environ Med 79(9):835–843

    Article  PubMed  Google Scholar 

  • Fitzgerald W, Chen S, Walz C, Zimmerberg J, Margolis L, Grivel JC (2009) Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station. In Vitro Cell Dev Biol Anim 45(10):622–632

    Article  PubMed  Google Scholar 

  • Fuchs BB, Medvedev AE (1993) Countermeasures for ameliorating in-flight immune dysfunction. J Leukoc Biol 54(3):245–252

    PubMed  CAS  Google Scholar 

  • Gmunder FK, Konstantinova I, Cogoli A, Lesnyak A, Bogomolov W, Grachov AW (1994) Cellular immunity in cosmonauts during long duration spaceflight on board the orbital MIR station. Aviat Space Environ Med 65(5):419–423

    PubMed  CAS  Google Scholar 

  • Gould CL, Lyte M, Williams J, Mandel AD, Sonnenfeld G (1987) Inhibited interferon-gamma but normal interleukin-3 production from rats flown on the space shuttle. Aviat Space Environ Med 58(10):983–986

    PubMed  CAS  Google Scholar 

  • Gridley DS, Slater JM, Luo-Owen X, Rizvi A, Chapes SK, Stodieck LS et al (2009) Spaceflight effects on T lymphocyte distribution, function and gene expression. J Appl Physiol 106(1):194–202

    Article  PubMed  Google Scholar 

  • Grove DS, Pishak SA, Mastro AM (1995) The effect of a 10-day space flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph node lymphocytes. Exp Cell Res 219(1):102–109

    Article  PubMed  CAS  Google Scholar 

  • Hashemi BB, Penkala JE, Vens C, Huls H, Cubbage M, Sams CF (1999) T cell activation responses are differentially regulated during clinorotation and in spaceflight. FASEB J 13(14):2071–2082

    PubMed  CAS  Google Scholar 

  • Hatton JP, Gaubert F, Cazenave JP, Schmitt D (2002) Microgravity modifies protein kinase C isoform translocation in the human monocytic cell line U937 and human peripheral blood T-cells. J Cell Biochem 87(1):39–50

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Fulford M (2003) Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res 32(8):1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Jager A, Kuchroo VK (2010) Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol 72(3):173–184

    Article  PubMed  CAS  Google Scholar 

  • Kaur I, Simons ER, Kapadia AS, Ott CM, Pierson DL (2008) Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin Vaccine Immunol 15(10):1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Kimzey SL, Ritzmann SE, Mengel CE, Fischer CL (1975) Skylab experiment results: hematology studies. Acta Astronaut 2(1–2):141–154

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova IV, Antropova EN, Legen’kov VI, Zazhirei VD (1973) Reactivity of lymphoid blood cells in the crew of “Soiuz-6”, “Soiuz-7” and “Soiuz-8” spacecraft before and after flight. Kosm Biol Med 7(6):35–40

    PubMed  CAS  Google Scholar 

  • Konstantinova IV, Rykova M, Meshkov D, Peres C, Husson D, Schmitt DA (1995) Natural killer cells after ALTAIR mission. Acta Astronaut 36(8–12):713–718

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH (1998) Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 12(11):1007–1018

    PubMed  CAS  Google Scholar 

  • Meehan RT, Neale LS, Kraus ET, Stuart CA, Smith ML, Cintron NM et al (1992) Alteration in human mononuclear leucocytes following space flight. Immunology 76(3):491–497

    PubMed  CAS  Google Scholar 

  • Meshkov D, Rykova M (1995) The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36(8–12):719–726

    Article  PubMed  CAS  Google Scholar 

  • Miller ES, Koebel DA, Sonnenfeld G (1995) Influence of spaceflight on the production of interleukin-3 and interleukin-6 by rat spleen and thymus cells. J Appl Physiol 78(3):810–813

    PubMed  CAS  Google Scholar 

  • Mills PJ, Meck JV, Waters WW, D’Aunno D, Ziegler MG (2001) Peripheral leukocyte subpopulations and catecholamine levels in astronauts as a function of mission duration. Psychosom Med 63(6):886–890

    PubMed  CAS  Google Scholar 

  • Morukov VB, Rykova M, Antropova EN, Berendeeva TA, Ponomarev SA, Larina IM (2010) Indicators of innate and adaptive immunity of cosmonauts after long-term space flight to international space station. Fiziol Cheloveka 36(3):19–30

    PubMed  CAS  Google Scholar 

  • Nash PV, Mastro AM (1992) Variable lymphocyte responses in rats after space flight. Exp Cell Res 202(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Pippia P, Sciola L, Cogoli-Greuter M, Meloni MA, Spano A, Cogoli A (1996) Activation signals of T lymphocytes in microgravity. J Biotechnol 47(2–3):215–222

    Article  PubMed  CAS  Google Scholar 

  • Rykova MP, Gertsik Iu G, Antropova EN, Buravkova LB (2006) Immunoglobulin e and allergen-specific IgE antibodies in cosmonauts before and after long-duration missions on the International Space Station. Aviakosm Ekolog Med 40(2):19–22

    PubMed  CAS  Google Scholar 

  • Rykova MP, Antropova EN, Larina IM, Morukov BV (2008) Humoral and cellular immunity in cosmonauts after the ISS missions. Acta Astronaut 63(7–10):697–705

    Article  Google Scholar 

  • Sonnenfeld G, Miller ES (1993) The role of cytokines in immune changes induced by spaceflight. J Leukoc Biol 54(3):253–258

    PubMed  CAS  Google Scholar 

  • Sonnenfeld G, Gould CL, Williams J, Mandel AD (1988) Inhibited interferon production after space flight. Acta Microbiol Hung 35(4):411–416

    PubMed  CAS  Google Scholar 

  • Sonnenfeld G, Davis S, Taylor GR, Mandel AD, Konstantinova IV, Lesnyak A et al (1996) Effect of space flight on cytokine production and other immunologic parameters of rhesus monkeys. J Interferon Cytokine Res 16(5):409–415

    Article  PubMed  CAS  Google Scholar 

  • Sonnenfeld G, Foster M, Morton D, Bailliard F, Fowler NA, Hakenewerth AM et al (1998) Spaceflight and development of immune responses. J Appl Physiol 85(4):1429–1433

    PubMed  CAS  Google Scholar 

  • Stowe RP (2003) Impaired effector function in virus-specific T cells in astronauts. NASA Investigators Workshop, Houston, 2003

    Google Scholar 

  • Stowe RP (2009) Validation of procedures for monitoring crewmember immune function. NASA Investigators Workshop, Houston, 2009

    Google Scholar 

  • Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL et al (1999) Leukocyte subsets and neutrophil function after short-term spaceflight. J Leukoc Biol 65(2):179–186

    PubMed  CAS  Google Scholar 

  • Stowe RP, Sams CF, Pierson DL (2003) Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 74(12):1281–1284

    PubMed  Google Scholar 

  • Taylor GR, Janney RP (1992) In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol 51(2):129–132

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Crucian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crucian, B., Sams, C. (2012). Adaptive Immunity and Spaceflight. In: Chouker, A. (eds) Stress Challenges and Immunity in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22272-6_12

Download citation

Publish with us

Policies and ethics