Skip to main content

Advertisement

Log in

Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Benner R.; van Oudenaren A.; de Ruiter H. Antibody formation in mouse bone marrow. IX. Peripheral lymphoid organs are involved in the initiation of bone marrow antibody formation. Cell. Immunol. 341: 125–137; 1977.

    Article  CAS  PubMed  Google Scholar 

  • Cogoli A. Space flight and the immune system. Vaccine 115: 496–503; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Cogoli A.; Tschopp A. Lymphocyte reactivity during spaceflight. Immunol. Today 61: 1–4; 1985.

    Article  CAS  PubMed  Google Scholar 

  • Cooper D.; Pellis N. R. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J. Leukoc. Biol. 635: 550–562; 1998.

    CAS  PubMed  Google Scholar 

  • Fitzgerald W.; Sylwester A. W.; Grivel J. C.; Lifson J. D.; Margolis L. B. Noninfectious X4 but not R5 human immunodeficiency virus type 1 virions inhibit humoral immune responses in human lymphoid tissue ex vivo. J. Virol. 7813: 7061–7068; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Glushakova S.; Baibakov B.; Margolis L. B.; Zimmerberg J. Infection of human tonsil histocultures: a model for HIV pathogenesis. Nat. Med. 112: 1320–1322; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Glushakova S.; Grivel J. C.; Fitzgerald W.; Sylwester A.; Zimmerberg J.; Margolis L. B. Evidence for the HIV-1 phenotype switch as a causal factor in acquired immunodeficiency. Nat. Med. 43: 346–349; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin T. J.; Prewett T. L.; Wolf D. A.; Spaulding G. F. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J. Cell. Biochem. 513: 301–311; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Hughes-Fulford M.; Lewis M. L. Effects of microgravity on osteoblast growth activation. Exp. Cell. Res. 2241: 103–109; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Ingber D. E. Tensegrity: the architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59: 575–599; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson I.; Grivel J. C.; Chen S. S.; Karlsson A.; Albert J.; Fenyo E. M.; Margolis L. B. Differential pathogenesis of primary CCR5-using human immunodeficiency virus type 1 isolates in ex vivo human lymphoid tissue. J. Virol. 7917: 11151–11160; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Konstantinova I.; Rykova M.; Lesnyak A.; Antropova E. Immune changes during long-duration missions. J. Leukoc. Biol. 543: 189–201; 1993.

    CAS  PubMed  Google Scholar 

  • Margolis L. B.; Fitzgerald W.; Glushakova S.; Hatfill S.; Amichay N.; Baibakov B.; Zimmerberg J. Lymphocyte trafficking and HIV infection of human lymphoid tissue in a rotating wall vessel bioreactor. AIDS Res. Hum. Retroviruses 1316: 1411–1420; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery P. O. Jr.; Cook J. E.; Reynolds R. C.; Paul J. S.; Hayflick L.; Stock D.; Schulz W. W.; Kimsey S.; Thirolf R. G.; Rogers T.; Campbell D. The response of single human cells to zero gravity. In Vitro 142: 165–173; 1978.

    Article  CAS  PubMed  Google Scholar 

  • Nicogossian A. E.; Pool S. L.; Uri J. J. Historical Perspectives. In: Nicogossian A. E.; Huntoon C. L.; Pool S. L. (eds) Space Physiology and Medicine. Lea & Febinger, Philadelphia, pp 3–49; 1993.

  • Schmitt D. A.; Hatton J. P.; Emond C.; Chaput D.; Paris H.; Levade T.; Cazenave J. P.; Schaffar L. The distribution of protein kinase C in human leukocytes is altered in microgravity. FASEB J. 1014: 1627–1634; 1996.

    CAS  PubMed  Google Scholar 

  • Schwarz R. P.; Goodwin T. J.; Wolf D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 142: 51–57; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenfeld G.; Mandel A. D.; Konstantinova I. V.; Taylor G. R.; Berry W. D.; Wellhausen S. R.; Lesnyak A. T.; Fuchs B. B. Effects of spaceflight on levels and activity of immune cells. Aviat. Space Environ. Med. 617: 648–653; 1990.

    CAS  PubMed  Google Scholar 

  • Sundaresan A.; Risin D.; Pellis N. R. Loss of signal transduction and inhibition of lymphocyte locomotion in a ground-based model of microgravity. In Vitro Cell. Dev. Biol. Anim. 382: 118–122; 2002.

    Article  PubMed  Google Scholar 

  • Taylor G. R.; Janney R. P. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J. Leukoc. Biol. 512: 129–132; 1992.

    CAS  PubMed  Google Scholar 

  • Taylor G. R.; Neale L. S.; Dardano J. R. Immunological analyses of U.S. Space Shuttle crewmembers. Aviat. Space Environ. Med. 573: 213–217; 1986.

    CAS  PubMed  Google Scholar 

  • Tsao Y. D.; Goodwin T. J.; Wolf D. A.; Spaulding G. F. Responses of gravity level variations on the NASA/JSC bioreactor system. Physiologist 351 Suppl: S49–S50; 1992.

    CAS  PubMed  Google Scholar 

  • Unsworth B. R.; Lelkes P. I. Growing tissues in microgravity. Nat. Med. 48: 901–907; 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NASA ISS team of Expedition IV and the CBOSS team at Houston, especially Keith Holubec, Amy Klein, Todd Elliot, Jennifer Miller, Dianne Hammond, Eric Warren, Ron Lockett, Melanie Bilske, John Love, Tom Goodwin, Tacey Baker, Chris Gefrides, and Neal Pellis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Charles Grivel.

Additional information

Editor: J. Denry Sato

Wendy Fitzgerald and Silvia Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, W., Chen, S., Walz, C. et al. Immune suppression of human lymphoid tissues and cells in rotating suspension culture and onboard the International Space Station. In Vitro Cell.Dev.Biol.-Animal 45, 622–632 (2009). https://doi.org/10.1007/s11626-009-9225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-009-9225-2

Keywords

Navigation