Skip to main content

Biological Activity of Oleuropein and its Derivatives

  • Reference work entry
  • First Online:
Natural Products

Abstract

Investigation of the biological effects of olive oil/leaf/fruit phenolic extracts and, more recently, of the isolated compounds oleuropein and hydroxytyrosol has revealed their health beneficial action opening the way for a potential pharmacological utilization as single drug or after enrichment of olive oil or other food component. After a brief description of the chemical structure, biosynthesis, and the enzymatic degradation of oleuropein, which generates other biological active derivatives (i.e., hydroxytyrosol), the present review will focus on the biological effects of oleuropein, oleuropein aglycone, and hydroxytyrosol, with particular attention on the molecular mechanism underlying their action, resulting from in vitro and in vivo experimentation performed using isolated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1H-NMR:

High-resolution proton nuclear magnetic resonance

3,4-DHPEA:

3,4-Dihydroxyphenyl ethanol

3,4-DHPEA-EA:

Oleuropein aglycone

3,4-DHPEA-EDA:

3,4-Dihydroxyphenyl ethanol-decarboxymethyl elenolic acid dialdehydic form

AD:

Alzheimer’s disease

APCI:

Atmospheric pressure chemical ionization

Aβ:

Amyloid beta peptide

CE:

Capillary electrophoresis

COX:

Cyclooxygenase

DAD-UV:

Diode array detector-ultraviolet

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EA:

Elenolic acid

ESI:

Electrospray ionization

FRAP:

Ferric reducing antioxidant potential

GC:

Gas chromatography

HIV:

Human immunodeficiency virus

HPLC:

High-performance liquid chromatography

HT:

Hydroxytyrosol

ICAM-1:

Intercellular adhesion molecule-1

iNOS:

Inducible nitric oxide synthase

IT:

Ion trap

LC:

Liquid chromatography

LCN2:

Lipocalin 2

LDL:

Low-density lipoprotein

LLE:

Liquid-liquid extraction

LPS:

Lipopolysaccharide

MAE:

Microwave-assisted extraction

MIR:

Medium infrared spectroscopy

MMP:

Matrix metalloproteinases

MS:

Mass spectrometry

MUFA:

Monounsaturated fatty acid

NF-kB:

Nuclear factor kappa B

OL:

Oleuropein

OLE:

Olive leaf extracts

OMW:

Olive mill wastewater

p-HPEA:

p-Hydroxyphenyl ethanol

p-HPEA-EA:

Ligstroside aglycone

p-HPEA-EDA:

p-Hydroxyphenyl ethanol-decarboxymethyl elenolic acid dialdehydic form

PLE:

Pressurized liquid extraction

QqQ:

Triple quadrupole systems

ROS:

Reactive oxygen species

SE:

Soxhlet extraction

SHLE:

Super Heated Liquid Extraction

SMC:

Smooth muscle cell

SPE:

Solid-phase extraction

TNF-α:

Tumor necrosis factor alpha

TOF:

Time of flight

UAE:

Ultrasound-assisted extraction

UPLC:

Ultra performance liquid chromatography

UV:

Ultraviolet

UV-Vis:

Ultraviolet-visible

VCAM-1:

Vascular adhesion molecule-1

VOO:

Virgin olive oil

References

  1. Willett WC et al (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61(Suppl 6):1402S–1406S

    CAS  Google Scholar 

  2. Dontas AS et al (1998) Comparative total mortality in 25 years in Italian and Greek middle aged rural men. J Epidemiol Commun Health 52:638–644

    Article  CAS  Google Scholar 

  3. Tripoli E et al (2005) The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr Res Rev 18:98–112

    Article  CAS  Google Scholar 

  4. Huang C, Sumpio B (2008) Olive oil, the Mediterranean diet, and cardiovascular health. J Am Coll Surg 207:407–416

    Article  Google Scholar 

  5. Farah R et al (2008) Secrets of the Mediterranean diet. Harefuah 147:422–427

    Google Scholar 

  6. García-Gonzalez D et al (2008) Virgin olive oil – chemical implications on quality and health. Eur J Lipid Sci Technol 110:602–607

    Article  CAS  Google Scholar 

  7. Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 78:133–154

    Article  CAS  Google Scholar 

  8. García-Gonealez DL, Aparicio R (2010) Research in olive oil: Challengers for the near future. Jagric Food Chem 58:12569–12577

    Google Scholar 

  9. Bartolini G et al (1998) Olive germplasm: cultivars and world-wide collections. FAO, Rome

    Google Scholar 

  10. Harper CR et al (2006) Flaxseed oil supplementation does not affect plasma lipoprotein concentration or particle size in human subjects. J Nutr 136:2844–2848

    CAS  Google Scholar 

  11. Aguilera CM et al (2004) Sunflower oil does not protect against LDL oxidation as virgin olive oil does in patients with peripheral vascular disease. Clin Nutr 23:673–681

    Article  CAS  Google Scholar 

  12. Boskou D (1996) Olive oil: chemistry and technology. AOCS Press, Champaign

    Google Scholar 

  13. Beltran G et al (2005) Influence of fruit ripening on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem 89:207–215

    Article  CAS  Google Scholar 

  14. Bendini A et al (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 12:1679–1719

    Article  CAS  Google Scholar 

  15. Carluccio M et al (2007) Vasculoprotective potential of olive oil components. Mol Nutr Food Res 51:1225–1234

    Article  CAS  Google Scholar 

  16. Servili M, Montedoro G (2002) Contribution of phenolic compound to virgin olive oil quality. Eur J Lipid Sci Technol 104:602–613

    Article  CAS  Google Scholar 

  17. Morello JR et al (2004) Changes in commercial virgin olive oil (cv. Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem 85:357–364

    Article  CAS  Google Scholar 

  18. Servili M et al (2008) Influence of the decrease in oxygen during malaxation of olive paste on the composition of volatiles and phenolic compounds in virgin olive oil. J Agric Food Chem 56:10048–10055

    Article  CAS  Google Scholar 

  19. Brenes M et al (2001) Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J Agric Food Chem 49:5609–5614

    Article  CAS  Google Scholar 

  20. Servili M et al (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspect of production that affect their occurrence in the oil. J Chromatogr 1054:113–127

    CAS  Google Scholar 

  21. Servili M et al (2007) Effect of olive stoning on the volatile and phenolic composition of virgin olive oil. J Agric Food Chem 55:7028–7035

    Article  CAS  Google Scholar 

  22. Servili M et al (2007) Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils Cv. Leccino. J Agric Food Chem 55:6609–6618

    Article  CAS  Google Scholar 

  23. Benavente-García O et al (2000) Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 68:457–462

    Article  Google Scholar 

  24. Soler-Rivas C et al (2000) Oleuropein and related compounds. J Sci Food Agric 80:1013–1023

    Article  CAS  Google Scholar 

  25. Ryan D et al (2002) Biotransformations of phenolic compounds in Olea europaea. L. Sci Hort 92:147–176

    Article  CAS  Google Scholar 

  26. Damtoft S et al (1992) Excelsioside, a secoiridoid glucoside from Fraxinus excelsior. Phytochemistry 31:4197–4201

    Article  CAS  Google Scholar 

  27. Damtoft S et al (1993) Biosynthesis of secoiridoid glucosides in Oleaceae. Phytochemistry 34:1291–1299

    Article  CAS  Google Scholar 

  28. Damtoft S et al (1995) Biosynthesis of iridoids in Syringa and Fraxinus: carbocyclic iridoid precursors. Phytochemistry 40:785–792

    Article  CAS  Google Scholar 

  29. Inouye H et al (1971) Biosynthesis of oleuropein-type secoiridoid glucosides by oleaceae. Tetrahedron Lett 43:4073–4076

    Article  Google Scholar 

  30. Romani A et al (2007) Evolution of minor polar compounds and antioxidant capacity during storage of bottled extra virgin olive oil. J Agric Food Chem 55:1315–1320

    Article  CAS  Google Scholar 

  31. Amiot MJ et al (1989) Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28:67–70

    Article  CAS  Google Scholar 

  32. Luque de Castro MD, Japón-Luján R (2006) State-of-the-art and trends in the analysis of oleuropein and derivatives. Trend Anal Chem 25:501–510

    Article  CAS  Google Scholar 

  33. Bianco AD et al (1993) Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 32:455–457

    Article  CAS  Google Scholar 

  34. Gutierrez-Rosales F et al (2010) Metabolites involved in oleuropein accumulation and degradation in fruits of Olea europaea L.: Hojiblanca and Arbequina varieties. J Agric Food Chem 58:12924–12933

    Article  CAS  Google Scholar 

  35. Ranalli A et al (2009) Variations of iridoid oleuropein in Italian olive varieties during growth and maturation. Eur J Lipid Sci Technol 111:678–687

    Article  CAS  Google Scholar 

  36. Morello JR et al (2004) Effect of the maturation process of the olive fruit on the phenolic fraction of drupes and oils from Arbequina, Farga, and Morrut cultivars. J Agric Food Chem 52:6002–6009

    Article  CAS  Google Scholar 

  37. Ryan D et al (2003) Quantitative changes in phenolic content during physiological development of the olive (Olea europaea) cultivar Hardy’s Mammoth. J Agric Food Chem 51:2532–2538

    Article  CAS  Google Scholar 

  38. Capozzi F et al (2000) Oleuropein site selective hydrolysis by tecnomimetric nuclear magnetic resonance experiments. J Agric Food Chem 48:1623–1629

    Article  CAS  Google Scholar 

  39. Obied H et al (2008) Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat Prod Rep 25:1167–1179

    Article  CAS  Google Scholar 

  40. Pizarro ML et al (2012) Comparison of different extraction methods to determine phenolic compounds in virgin olive oil. Food Anal Met. doi:10.1007/s12161-012-9420-8

    Google Scholar 

  41. Cardoso SM et al (2011) Oleuropein/ligstroside isomers and their derivatives in Portuguese olive mill wastewaters. Food Chem 129:291–296

    Article  CAS  Google Scholar 

  42. Montedoro GF et al (1992) Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Initial characterization of the hydrolyzable fraction. J Agric Food Chem 40:1571–1576

    Article  CAS  Google Scholar 

  43. Gómez-Caravaca AM et al (2008) Effects of fly attack (Bactrocera oleae) on the phenolic profile and selected chemical parameters of olive oil. J Agric Food Chem 56:4577–4583

    Article  CAS  Google Scholar 

  44. Suárez M et al (2008) Improved liquid chromatography tandem mass spectrometry method for the determination of phenolic compounds in virgin olive oil. J Chromatogr A 1214:90–99

    Article  CAS  Google Scholar 

  45. Liberatore L et al (2001) Solid-phase extraction and gas-chromatographic analysis of phenolic compounds in virgin olive oil. Food Chem 73:119–124

    Article  CAS  Google Scholar 

  46. Ríos JJ et al (2005) Solid-phase extraction gas chromatography-ion trap-mass spectrometry qualitative method for evaluation of phenolic compounds in virgin olive oil and structural confirmation of oleuropein and ligstroside aglycons and their oxidation products. J Chromatogr A 1093:167–176

    Article  CAS  Google Scholar 

  47. Saitta M et al (2002) Gas chromatographic–tandem mass spectrometric identification of phenolic compounds in Sicilian olive oils. Anal Chim Acta 466:335–344

    Article  CAS  Google Scholar 

  48. Ruiz-Jiménez J, Luque de Castro MD (2003) Flow injection manifolds for liquid–liquid extraction without phase separation assisted by ultrasound. Anal Chim Acta 489:1–11

    Article  CAS  Google Scholar 

  49. Gutiérrez-Rosales F et al (2003) Main polyphenols in the bitter taste of virgin olive oil. Structural confirmation by on-line high-performance liquid chromatography electrospray ionization mass spectrometry. J Agric Food Chem 51:6021–6025

    Article  CAS  Google Scholar 

  50. Caruso D et al (2000) Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). J Agric Food Chem 48:1182–1185

    Article  CAS  Google Scholar 

  51. Pirisi FM et al (2000) Phenolic compounds in virgin olive oil. 2. Reappraisal of the extraction, HPLC separation, and quantification procedures. J Agric Food Chem 48:1191–1196

    Article  CAS  Google Scholar 

  52. Carrasco-Pancorbo A et al (2005) Co-electroosmotic capillary electrophoresis determination of phenolic acids in commercial olive oil. J Sep Sci 28:925–934

    Article  CAS  Google Scholar 

  53. Carrasco-Pancorbo A et al (2006) A simple and rapid electrophoretic method to characterize simple phenols, lignans, complex phenols, phenolic acids, and flavonoids in extra virgin olive oil. J Sep Sci 29:2221–2233

    Article  CAS  Google Scholar 

  54. Godoy-Caballero MP et al (2012) Development of a non-aqueous capillary electrophoresis method with UV–visible and fluorescence detection for phenolics compounds in olive oil. Anal Bioanal Chem 403:279–290

    Article  CAS  Google Scholar 

  55. Berzas Nevado JJ et al (2009) CE–ESI–MS analytical method for the separation, identification and quantification of seven phenolic acids including three isomer compounds in virgin olive oil. Talanta 79:1238–1246

    Article  CAS  Google Scholar 

  56. Christophoridou S et al (2005) Separation and identification of phenolic compounds in olive oil by coupling High-performance liquid chromatography with post-column solid-phase extraction to nuclear magnetic resonance spectroscopy (LC-SPE-NMR). J Agric Food Chem 53:4667–4679

    Article  CAS  Google Scholar 

  57. Valli E et al (2010) Effects of heating on virgin olive oils and their blends: focus on modifications of phenolic fraction. J Agric Food Chem 58:8158–8166

    Article  CAS  Google Scholar 

  58. Paiva-Martins F et al (2011) Characterization of antioxidant olive oil biophenols by spectroscopic methods. J Sci Food Agric 91:309–314

    Article  CAS  Google Scholar 

  59. Agalias A et al (2005) Quantitation of oleuropein and related metabolites in decoctions of Olea Europaea leaves from ten Greek cultivated varieties by HPLC with diode array detection (HPLC-DAD). J Liq Chromatogr Relat Technol 28:1557–1571

    Article  CAS  Google Scholar 

  60. Paiva-Martins F, Gordon MH (2001) Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. J Agric Food Chem 49:4214–4219

    Article  CAS  Google Scholar 

  61. Aouidi F et al (2012) Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Ind Crop Prod 37:292–297

    Article  CAS  Google Scholar 

  62. Japon-Lujan R, Luque de Castro MD (2006) Superheated liquid extraction of oleuropein and related biophenols from olive leaves. J Chromatogr A 1136:185–191

    Article  CAS  Google Scholar 

  63. Tabera J et al (2004) Countercurrent supercritical fluid extraction and fractionation of high-added-value compounds from a hexane extract of olive leaves. J Agric Food Chem 52:4774–4779

    Article  CAS  Google Scholar 

  64. Procopio A et al (2009) Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. J Agric Food Chem 57:11161–11167

    Article  CAS  Google Scholar 

  65. Herrero M et al (2011) New possibilities for the valorization of olive oil by-products. J Chromatogr A 1218:7511–7520

    Article  CAS  Google Scholar 

  66. Jerman T et al (2010) Ultrasound assisted solid liquid extraction (USLE) of olive fruit (Olea europaea). Food Chem 123:175–182

    Article  CAS  Google Scholar 

  67. Bianco A, Uccella N (2000) Biophenolic components of olives. Food Res Int 33:475–485

    Article  CAS  Google Scholar 

  68. Savarese M et al (2007) Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem 105:761–770

    Article  CAS  Google Scholar 

  69. Ryana D et al (1999) Determination of phenolic compounds in olives by reversed-phase chromatography and mass spectrometry. J Chromatogr A 832:87–96

    Article  Google Scholar 

  70. Priego-Capote F et al (2004) Fast separation and determination of phenolic compounds by capillary electrophoresis-diode array detection: application to the characterization of alperujo after ultrasound-assisted extraction. J Chromatogr A 1045:239–246

    Article  CAS  Google Scholar 

  71. Emmons W, Guttersen C (2005) US20050103711

    Google Scholar 

  72. Takaç S et al (2009) Recovery of phenolic antioxidants from olive mill wastewater. Rec Pat Chem Eng 2:230–237

    Article  Google Scholar 

  73. El Riachy M et al (2011) Hydrophilic antioxidants of virgin olive oil. Part 1: hydrophilic phenols: a key factor for virgin olive oil quality. Eur J Lipid Sci Technol 113:678–691

    Article  CAS  Google Scholar 

  74. Ryan D, Robards K (1999) Applications of mass spectrometry to plant phenols. Trend Anal Chem 18:362–372

    Article  CAS  Google Scholar 

  75. Soler C et al (2006) Comparison of tour mass analyzers for determining carbosulfan and its metabolites in citrus by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20:2151–2164

    Article  CAS  Google Scholar 

  76. Careri M et al (2002) Recent advances in the application of mass spectrometry in food-related analysis. J Chromatogr A 970:3–64

    Article  CAS  Google Scholar 

  77. Soler C et al (2006) Comparison of tour mass analyzers for determining carbosulfan and its metabolites in citrus by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 20:2151–2164

    Article  CAS  Google Scholar 

  78. Di Donna L et al (2011) High-throughput assay of oleopentanedialdheydes in extra virgin olive oil by the UHPLC − ESI-MS/MS and isotope dilution methods. Anal Chem 83:1990–1995

    Article  CAS  Google Scholar 

  79. Bristow AWT, Webb KS (2003) Intercomparison study on accurate mass measurement of small molecules in mass spectrometry. J Am Soc Mass Spectrom 14:1086–1098

    Article  CAS  Google Scholar 

  80. Bianco AD et al (1999) NMR experiments of oleuropein biomimetic hydrolysis. J Agric Food Chem 47:3665–3668

    Article  CAS  Google Scholar 

  81. Alonso-Salces RM et al (2012) Quality assessment of olive oil by 1H-NMR fingerprinting, olive oil – constituents, quality, health properties and bioconversions. Dr. Boskou D (ed) http://www.intechopen.com/books/olive-oil-constituents-quality-health-properties-and-bioconversions/quality-assessment-of-olive-oil-by-1h-nmr-fingerprinting. Accessed 15 May 2012

  82. Gomez-Rico A et al (2008) Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res Int 41:433–440

    Article  CAS  Google Scholar 

  83. Angerosa F (2000) In: Harwood J, Aparicio R (eds) Handbook of olive oil. Analysis and properties. Aspen Publication, Gaithenburg

    Google Scholar 

  84. Vissers MN (2004) Bioavailability and antioxidant effects of olive oil phenols in humans: a review. Eur J Clin Nutr 58:955–965

    Article  CAS  Google Scholar 

  85. Coni E et al (2000) Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 35:45–53

    Article  CAS  Google Scholar 

  86. Covas MI et al (2000) Virgin olive oil phenolic compounds: binding to human low density lipoprotein (LDL) and effect on LDL oxidation. Int J Clin Pharmacol Res 20:4954

    Google Scholar 

  87. Paiva-Martins F et al (2003) Activity and location of olive oil phenolic antioxidants in liposomes. Chem Phys Lipids 124:26–34

    Article  CAS  Google Scholar 

  88. Lipinski CA et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  89. Romero C et al (2007) In vitro activity of olive oil polyphenols against Helicobacter pylori. J Agric Food Chem 55:680–686

    Article  CAS  Google Scholar 

  90. Vissers MN et al (2002) Olive oil phenols are absorbed in humans. J Nutr 132:409–417

    CAS  Google Scholar 

  91. Tan HW et al (2003) Simultaneous determination of oleuropein and hydroxytyrosol in rat plasma using liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 785:187–191

    Article  CAS  Google Scholar 

  92. Del Boccio P et al (2003) Liquid chromatography-tandem mass spectrometry analysis of oleuropein and its metabolite hydroxytyrosol in rat plasma and urine after oral administration. J Chromatogr B 785:47–56

    Article  Google Scholar 

  93. Visioli F et al (2000) Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett 131:159–160

    Article  Google Scholar 

  94. Tuck KL (2002) Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. J Agric Food Chem 50:2404–2409

    Article  CAS  Google Scholar 

  95. Miró-Casas E et al (2003) Hydroxytyrosol disposition in humans. Clin Chem 49:945–952

    Article  Google Scholar 

  96. Caruso D et al (2001) Urinary excretion of olive oil phenols and their metabolites in humans. Metab Clin Exp 50:1426–1428

    Article  CAS  Google Scholar 

  97. Tuck KL et al (2001) The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labelled compounds to rats. J Nutr 131:1993–1996

    CAS  Google Scholar 

  98. Miró-Casas E et al (2003) Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr 57:186–190

    Article  CAS  Google Scholar 

  99. Manna C et al (2000) Transport mechanism and metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:341–344

    Article  CAS  Google Scholar 

  100. Marrugat J et al (2004) Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation. A randomized controlled trial. Eur J Nutr 43:140–147

    Article  CAS  Google Scholar 

  101. Ruiz-Gutierrez V et al (2000) Determination of hydroxytyrosol in plasma by HPLC. Anal Chem 72:4458–4461

    Article  CAS  Google Scholar 

  102. Tsarbopoulosa A et al (2003) Simultaneous determination of oleuropein and its metabolites in plasma by high-performance liquid chromatography. J Chromatogr B 785:157–164

    Article  Google Scholar 

  103. Visioli F, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64

    Article  CAS  Google Scholar 

  104. Edgecombe SC et al (2000) Oleuropein, an antioxidant polyphenol from olive oil, is poorly absorbed from isolated perfused rat intestine. J Nutr 130:2996–3002

    CAS  Google Scholar 

  105. Soler A et al (2010) Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chem 119:703–714

    Article  CAS  Google Scholar 

  106. D’Angelo S et al (2001) Pharmacokinetics and metabolism of hydroxytyrosol, a natural antioxidant from olive oil. Drug Metab Dispos 29:1492–1498

    Google Scholar 

  107. Mateos R et al (2005) Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. J Agric Food Chem 53:9897–9905

    Article  CAS  Google Scholar 

  108. El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67:632–638

    Article  Google Scholar 

  109. Granados-Principal S et al (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206

    Article  Google Scholar 

  110. Cicerale S et al (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23:129–135

    Article  CAS  Google Scholar 

  111. Gallina-Toschi T et al (2005) Oxidative stability and phenolic content of virgin olive oil: an analytical approach by traditional and high resolution techniques. J Sep Sci 28:859–870

    Article  CAS  Google Scholar 

  112. Bendini A et al (2009) Stability of the sensory quality of virgin olive oil during storage: an overview. Ital J Food Sci 21:389–406

    CAS  Google Scholar 

  113. Porter WL et al (1989) Use of polyamide oxidative fluorescence test on lipid emulsions: contrast in relative effectiveness of antioxidants in bulk versus dispersed systems. J Agric Food Chem 37:615–624

    Article  CAS  Google Scholar 

  114. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  CAS  Google Scholar 

  115. Duracková Z (2010) Some current insights into oxidative stress. Physiol Res 59:459–469

    Google Scholar 

  116. Lavelli V (2002) Comparison of the antioxidant activities of extra virgin olive oils. J Agric Food Chem 50:7704–7708

    Article  CAS  Google Scholar 

  117. Visioli F et al (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    Article  CAS  Google Scholar 

  118. Andrikopoulos NK et al (2002) Inhibitory activity of minor polyphenolic and nonpolyphenolic constituents of olive oil against in vitro low-density lipoprotein oxidation. J Med Food 5:1–7

    Article  CAS  Google Scholar 

  119. Aruoma OI et al (1998) Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. J Agric Food Chem 46:5181–5187

    Article  CAS  Google Scholar 

  120. Visioli F et al (1998) The effect of minor constituents of olive oil on cardiovascular disease: new findings. Nutr Rev 56:142–147

    Article  CAS  Google Scholar 

  121. Carrasco-Pancorbo A et al (2005) Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J Agric Food Chem 53:8918–8925

    Article  CAS  Google Scholar 

  122. de la Puerta R et al (1999) Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol 57:445–449

    Article  Google Scholar 

  123. Zhu L et al (2010) Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J Nutr Biochem 21:1089–1098

    Article  CAS  Google Scholar 

  124. Domitrović R et al (2012) Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacol Res 65:451–464

    Article  CAS  Google Scholar 

  125. Briante R et al (2002) Olea europaea L. leaf extract and derivatives: antioxidant properties. J Agric Food Chem 50(17):4934–4940

    Article  CAS  Google Scholar 

  126. Visioli F et al (1998) Oleuropein, the bitter principle of olives, enhances nitric oxide production by mouse macrophages. Life Sci 62:541–546

    Article  CAS  Google Scholar 

  127. Maiuri MC et al (2005) Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation. Naunyn Schmiedebergs Arch Pharmacol 371:457–465

    Article  CAS  Google Scholar 

  128. Zhang X et al (2009) Hydroxytyrosol inhibits proinflammatory cytokines, iNOS, and COX-2 expression in human monocytic cells. Naunyn Schmiedebergs Arch Pharmacol 379:581–586

    Article  CAS  Google Scholar 

  129. de la Puerta R et al (2000) Effect of minor components of virgin olive oil on topical antiinflammatory assays. Z Naturforsch C 55:814–819

    Google Scholar 

  130. Gong D et al (2008) Effects of hydroxytyrosol-20 on carrageenan-induced acute inflammation and hyperalgesia in rats. Phytother Res 23:646–650

    Article  CAS  Google Scholar 

  131. Giner E et al (2011) Oleuropein ameliorates acute colitis in mice. J Agric Food Chem 59(24):12882–12892

    Article  CAS  Google Scholar 

  132. Petroni A et al (1995) Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb Res 78:151–160

    Article  CAS  Google Scholar 

  133. González-Correa JA et al (2008) Effects of hydroxytyrosol and hydroxytyrosol acetate administration to rats on platelet function compared to acetylsalicylic acid. J Agric Food Chem 56:7872–7876

    Article  CAS  Google Scholar 

  134. Beauchamp GK et al (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    Article  CAS  Google Scholar 

  135. Procopio A et al (2008) Chemical-catalytic method for the peracylation of oleuropein and its products of hydrolysis: PCT/IT2008/000303

    Google Scholar 

  136. Impellizzeri D et al (2011) The effects of oleuropein aglycone, an olive oil compound, in a mouse model of carrageenan-induced pleurisy. Clin Nutr 30:533–540

    Article  CAS  Google Scholar 

  137. Impellizzeri D et al (2011) Oleuropein aglycone, an olive oil compound, ameliorates development of arthritis caused by injection of collagen type II in mice. J Pharmacol Exp Ther 339:859–869

    Article  CAS  Google Scholar 

  138. Impellizzeri D et al (2012) The effects of a polyphenol present in olive oil, oleuropein aglycone, in an experimental model of spinal cord injury in mice. Biochem Pharmacol 83:1413–1426

    Article  CAS  Google Scholar 

  139. Keys A et al (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124:903–915

    CAS  Google Scholar 

  140. Packard RRS et al (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38

    Article  CAS  Google Scholar 

  141. Carr A et al (2000) Vitamin C protects against and reverses specific hypochlorous acid- and chloramine-dependent modifications of low-density lipoprotein. Biochem J 346:491–499

    Article  CAS  Google Scholar 

  142. Jemai H et al (2008) Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact 176:88–98

    Article  CAS  Google Scholar 

  143. Jemai H et al (2008) Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats. J Agric Food Chem 56:2630–2636

    Article  CAS  Google Scholar 

  144. Carluccio MA et al (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–629

    Article  CAS  Google Scholar 

  145. Dell’Agli M et al (2010) Olive oil phenols modulate the expression of metalloproteinase 9 in THP-1 cells by acting on nuclear factor-kappaB signaling. J Agric Food Chem 58:2246–2252

    Article  CAS  Google Scholar 

  146. Ferroni P et al (2012) Platelet function in health and disease: from molecular mechanisms, redox considerations to novel therapeutic opportunities. Antioxid Redox Signal. doi:10.1089/ars.2011.4324

    Google Scholar 

  147. Dell’Agli M et al (2008) Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr 99:945–951

    Google Scholar 

  148. Abe R et al (2011) Olive oil polyphenol oleuropein inhibits smooth muscle cell proliferation. Eur J Vasc Endovasc Surg 41:814–820

    Article  CAS  Google Scholar 

  149. Manna C et al (2004) Oleuropein prevents oxidative myocardial injury by ischemia and reperfusion. J Nutr Biochem 15:461–468

    Article  CAS  Google Scholar 

  150. Andreadou I et al (2006) The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J Nutr 136:2213–2219

    CAS  Google Scholar 

  151. Mukherjee S et al (2009) Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free Radic Biol Med 46:573–578

    Article  CAS  Google Scholar 

  152. Gonzalez M et al (1992) Hypoglycemic activity of olive leaf. Planta Med 58:513–515

    Article  CAS  Google Scholar 

  153. Lean ME et al (1999) Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48:176–181

    Article  CAS  Google Scholar 

  154. Al-Azzawie HF, Alhamdani MS (2006) Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci 78:1371–1377

    Article  CAS  Google Scholar 

  155. Jemai H et al (2009) Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J Agric Food Chem 57:8798–8804

    Article  CAS  Google Scholar 

  156. Hamden K et al (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem Biol Interact 180:421–432

    Article  CAS  Google Scholar 

  157. Poudyal H et al (2010) Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J Nutr 140:946–953

    Article  CAS  Google Scholar 

  158. Kaneto H et al (2007) Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med 7:674–686

    Article  CAS  Google Scholar 

  159. Cumaoğlu A et al (2011) Polyphenolic extracts from Olea europea L. protect against cytokine-induced β-cell damage through maintenance of redox homeostasis. Acta Biochim Pol 58:45–50

    Google Scholar 

  160. Cumaoğlu A et al (2011) Effects of olive leaf polyphenols against H2O2 toxicity in insulin secreting β-cells. Rejuvenation Res 14:325–334

    Article  CAS  Google Scholar 

  161. Rigacci S et al (2010) Oleuropein aglycon prevents cytotoxic amyloid aggregation of human amylin. J Nutr Biochem 21:726–735

    Article  CAS  Google Scholar 

  162. Kim Y et al (2010) Hepatoprotective effect of oleuropein in mice: mechanisms uncovered by gene expression profiling. Biotechnol J 5:950–960

    Article  CAS  Google Scholar 

  163. Law IK et al (2010) Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes 59:872–882

    Article  CAS  Google Scholar 

  164. La Vecchia C, Bosetti C (2006) Diet and cancer risk in Mediterranean countries: open issue. Public Health Nutr 9:1077–1082

    Article  Google Scholar 

  165. Cicerale S et al (2010) Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 11:458–479

    Article  CAS  Google Scholar 

  166. Goulas V et al (2009) Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol Nutr Food Res 53:600–608

    Article  CAS  Google Scholar 

  167. Fabiani R et al (2002) Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur J Cancer Prev 11:351–358

    Article  CAS  Google Scholar 

  168. Menendez JA et al (2007) Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™) in HER2-overexpressing breast cancer cells. BMC Cancer 7:80

    Article  CAS  Google Scholar 

  169. Bouallagui Z et al (2011) Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem Toxicol 49:179–184

    Article  CAS  Google Scholar 

  170. Warleta F et al (2011) Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients 3:839–857

    Article  CAS  Google Scholar 

  171. Hamdi HK, Castellon R (2005) Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem Biophys Res Commun 334:769–778

    Article  CAS  Google Scholar 

  172. Della Ragione F et al (2000) Hydroxytyrosol, a natural molecule occurring in olive oil, induces cytochrome c-dependent apoptosis. Biochem Biophys Res Commun 278:733–739

    Article  CAS  Google Scholar 

  173. Fabiani R et al (2006) Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL60) by inducing apoptosis and differentiation. J Nutr 136:614–619

    CAS  Google Scholar 

  174. Guichard C et al (2006) Dihydroxyphenylethanol induces apoptosis by activating serine/threonine protein phosphatase PP2A and promotes the endoplasmic reticulum stress response in human colon carcinoma cells. Carcinogenesis 27:1812–1827

    Article  CAS  Google Scholar 

  175. Han J et al (2009) Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology 59:45–53

    Article  CAS  Google Scholar 

  176. Anter J et al (2011) A pilot study on the DNA-protective, cytotoxic, and apoptosis-inducing properties of olive-leaf extracts. Mut Res 723:165–170

    Article  CAS  Google Scholar 

  177. Notarnicola M et al (2011) Effects of olive oil polyphenols on fatty acid synthase gene expression and activity in human colorectal cancer cells. Genes Nutr 6:63–69

    Article  CAS  Google Scholar 

  178. Fabiani R et al (2008) Inhibition of cell cycle progression by hydroxytyrosol is associated with upregulation of cyclin-dependent protein kinase inhibitors p21(WAF1/Cip1) and p27(Kip1) and with induction of differentiation in HL60 cells. J Nutr 138:42–48

    CAS  Google Scholar 

  179. Sirianni R et al (2010) Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol Nutr Food Res 54:833–840

    Article  CAS  Google Scholar 

  180. Menendez JA et al (2008) tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial extra-virgin olive oil (EVOO). BMC Cancer 8:377–399

    Article  CAS  Google Scholar 

  181. Menendez JA et al (2008) Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. Int J Mol Med 22:433–439

    CAS  Google Scholar 

  182. Scoditti E et al (2012) Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys (in press). http://dx.doi.org/10.1016/j.abb.2012.05.003

  183. Babich H et al (2003) In vitro cytotoxicity to human cells in culture of some phenolics from olive oil. Farmaco 58:403–407

    Article  CAS  Google Scholar 

  184. Kikuchi M et al (2011) Cytotoxic and EGFR tyrosine kinase inhibitory activities of aglycone derivatives obtained by enzymatic hydrolysis of oleoside-type secoiridoid glucosides, oleuropein and ligustroside. J Nat Med 65:237–240

    Article  CAS  Google Scholar 

  185. Bulotta S et al (2011) Antiproliferative and antioxidant effects of oleuropein and its semisynthetic peracetylated derivatives on breast cancer cells. Food Chem 127:1609–1614

    Article  CAS  Google Scholar 

  186. Zhang X et al (2009) Suppressive effects of hydroxytyrosol on oxidative stress and nuclear factor kappaB activation in THP-1 cells. Biol Pharm Bull 32:578–582

    Article  CAS  Google Scholar 

  187. Sudjana AN et al (2009) Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents 33:461–463

    Article  CAS  Google Scholar 

  188. Fleming HP et al (1973) Antimicrobial properties of oleuropein and products of its hydrolysis from green olives. Appl Microbiol 26:777–782

    CAS  Google Scholar 

  189. Aziz NH et al (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

    CAS  Google Scholar 

  190. Bisignano G et al (1999) On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51:971–974

    Article  CAS  Google Scholar 

  191. Furneri PM et al (2002) In vitro antimycoplasmal activity of oleuropein. Int J Antimicrob Agents 20:293–296

    Article  CAS  Google Scholar 

  192. Jiang JH et al (2008) Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla. Biol Pharm Bull 31:2273–2276

    Article  CAS  Google Scholar 

  193. Tranter HS et al (1993) The effect of the olive phenolic compound, oleuropein, on growth and enterotoxin B production by Staphylococcus aureus. J Appl Bacteriol 74:253–259

    Article  CAS  Google Scholar 

  194. Tassou CC, Nychas GJE (1994) Inhibition of Staphylococcus aureus by olive phenolics in broth and in a model food system. J Food Prot 57:120–124

    CAS  Google Scholar 

  195. Tassou CC, Nychas GJE (1995) Inhibition of Salmonella enteritidis by oleuropein in broth and in a model food system. Lett Appl Microbiol 20:120–124

    Article  CAS  Google Scholar 

  196. Lee O-H, Lee B-J (2010) Antioxidant and antimicrobial activities of individual and combined phenolics in Olea europea leaf extract. Bioresour Technol 101:3751–3754

    Article  CAS  Google Scholar 

  197. Tassou CC et al (1991) Effect of phenolic compounds and oleuropein on the germination of Bacillus cereus T spores. Biotechnol Appl Biochem 13:231–237

    CAS  Google Scholar 

  198. Fredrickson WR, F and S Group (2000) Inc method and composition for antiviral therapy with olive leaves. U.S. Patent 6 117:884

    Google Scholar 

  199. Ma SC et al (2001) In vitro evaluation of secoiridoid glucosides from the fruits of Ligustrum lucidum as antiviral agents. Chem Pharm Bull 49:1471–1473

    Article  CAS  Google Scholar 

  200. Lee-Huang S et al (2007) Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition. Biochem Biophys Res Commun 354:872–878

    Article  CAS  Google Scholar 

  201. Bao J et al (2007) Computational study of bindings of olive leaf extract (OLE) to HIV-1 fusion protein gp41. FEBS Lett 581:2737–2742

    Article  CAS  Google Scholar 

  202. Lukiw WJ (2012) Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD). Exp Opin Emerg Drugs. doi:10.1517/14728214.2012.672559

    Google Scholar 

  203. Shepardson NE et al (2011) Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 68:1385–1392

    Article  Google Scholar 

  204. Heininger K (1999) A unifying hypothesis of Alzheimer’s disease. II. Pathophysiological processes. Hum Psychopharmacol Clin Exp 14:525–581

    Article  CAS  Google Scholar 

  205. Galanakis PA et al (2011) Study of the interaction between the amyloid beta peptide (1-40) and antioxidant compounds by nuclear magnetic resonance spectroscopy. Biopolymers 96:316–327

    Article  CAS  Google Scholar 

  206. Bazoti FN et al (2006) Noncovalent Interaction between Amyloid-β-Peptide (1–40) and Oleuropein studied by electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 17:568–575

    Article  CAS  Google Scholar 

  207. St-Laurent-Thibault C et al (2011) Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-β-induced toxicity. Involvement of the NF-κB signaling. Curr Alzheimer Res 8:543–551

    Article  CAS  Google Scholar 

  208. Daccache A et al (2011) Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem Int 58:700–707

    Article  CAS  Google Scholar 

  209. Khalatbary AR, Ahmadvand H (2012) Neuroprotective effect of oleuropein following spinal cord injury in rats. Neurol Res 34:44–51

    Article  CAS  Google Scholar 

  210. Budiyanto A et al (2000) Protective effect of topically applied olive oil against photocarcinogenesis following UVB exposure of mice. Carcinogenesis 21:2085–2090

    Article  CAS  Google Scholar 

  211. Ancora C et al (2004) Evaluation of cosmetic efficacy of oleoeuropein. Symposium on the new frontiers of dermo-cosmetology: efficacy, stability and safety. Dissertation, university of Rome

    Google Scholar 

  212. Perugini P et al (2008) Efficacy of oleuropein against UVB irradiation: preliminary evaluation. Int J Cosmet Sci 30:113–120

    Article  CAS  Google Scholar 

  213. Kimura Y, Sumiyoshi M (2009) Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J Nutr 139:2079–2086

    Article  CAS  Google Scholar 

  214. Sumiyoshi M, Kimura Y (2010) Effects of olive leaf extract and its main component oleuroepin on acute ultraviolet B irradiation-induced skin changes in C57BL/6 J mice. Phytother Res 24:995–1003

    CAS  Google Scholar 

  215. Procopio A et al (2011) Lipophilic hydroxytyrosol esters: fatty acid conjugates for potential topical administration. J Nat Prod 74:2377–2381

    Article  CAS  Google Scholar 

  216. Soni MG et al (2006) Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem Toxicol 44:903–915

    Article  CAS  Google Scholar 

  217. Stupans I et al (2000) Olive oil phenols inhibit human hepatic microsomal activity. J Nutr 130:2367–2370

    CAS  Google Scholar 

  218. Stupans I et al (2001) Inactivation of cytochrome P450 by the food-derived complex phenol oleuropein. Food Chem Toxicol 39:1119–1124

    Article  CAS  Google Scholar 

  219. Markopoulos C et al (2009) Stability of oleuropein in the human proximal gut. J Pharm Pharmacol 61:143–149

    Article  CAS  Google Scholar 

  220. Achat S et al (2012) Direct enrichment of olive oil in oleuropein by ultrasound-assisted maceration at laboratory and pilot plant scale. Ultrason Sonochem 19:777–786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Bulotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bulotta, S., Oliverio, M., Russo, D., Procopio, A. (2013). Biological Activity of Oleuropein and its Derivatives. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_156

Download citation

Publish with us

Policies and ethics