Skip to main content

Electrical Impedance Spectroscopy and Roots

  • Chapter
  • First Online:
Measuring Roots

Abstract

This chapter reviews studies dealing with the characterization of the plant root system by the electrical impedance method, i.e., with resistance and capacitance at a single frequency or at multifrequencies, according to the approach used in electrical impedance spectroscopy (EIS). Several studies have shown a correlation between electrical capacitance and resistance at a single low frequency with root biomass and morphology (e.g., surface area). It has not been possible to define clearly which part of the root system the electrical parameters represent. The circuitry in the stem–root–soil continuum has been analyzed in more detail by means of EIS. Using this approach, lumped and distributed models have been formulated that consider the role of roots in the context of other components in the circuitry. By means of EIS, a parameter referring to root capacitance was found to correlate positively with root biomass and root surface area. Several open questions remain with regard to the applications of the method. More studies are needed for the evaluation of longitudinal and radial electric field distribution between root interior and soil along the root system from root collar to root tips. In addition, further studies are needed under standardized measurement conditions with soils of different ionic composition and texture as the growing substrate, and also by taking into account the role played by mycorrhizas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackmann JJ, Seitz MA (1984) Methods of complex impedance measurements in biological tissue. CRC Crit Rev Biomed Eng 11:281–311

    CAS  Google Scholar 

  • Altmann M, Pliquett U, Suess R, von Borell E (2004) Predication of lamb carcass composition by impedance spectroscopy. J Anim Sci 82:816–825

    PubMed  CAS  Google Scholar 

  • Aubrecht L, Stanek Z, Koller J (2006) Electrical measurement of the absorption surface of tree roots by the earth impedance method: 1. Theory. Tree Physiol 26:1105–1112

    Article  PubMed  Google Scholar 

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy theory, experiment, and applications, 2nd edn. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  • Bayford RH (2006) Bioimpedance tomography (electrical impedance tomography). Ann Rev Biomed Eng 8:63–91

    Article  CAS  Google Scholar 

  • Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J 67:1607–1615

    Article  CAS  Google Scholar 

  • Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2010) An appraisal of the electrical resistance method for assessing root surface area. J Exp Bot 61:2491–2497

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Repo T, Silvennoinen R, Lehto T, Pelkonen P (2011) Analysis of willow root system by electrical impedance spectroscopy. J Exp Bot 62:351–358

    Google Scholar 

  • Čermák J, Ulrich R, Stanek Z, Koller J, Aubrecht L (2006) Electrical measurement of the absorption surface of tree roots by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments. Tree Physiol 26:1113–1121

    Article  PubMed  Google Scholar 

  • Chloupek O (1972) The relationship between electric capacitance and some other parameters of plant roots. Biol Plant 14:227–230

    Article  Google Scholar 

  • Chloupek O (1977) Evaluation of the size of a plant’s root system using its electrical capacitance. Plant Soil 48:525–532

    Article  Google Scholar 

  • Chloupek O, Skàcel M, Ehrenbergerova J (1998) Effect of divergent selection for root size in field-grown alfalfa. Can J Plant Sci 79:93–95

    Article  Google Scholar 

  • Cole KS, Cole RH (1941) Dispersion and absorption in diaelectrics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  • Costa C, Dwyer LM, Hamilton RI (2000) A sampling method for measurement of large root systems with scanner-based image analysis. Agr J 92:21–27

    Article  Google Scholar 

  • Dalton FN (1995) In-situ root extent measurement by electrical capacitance methods. Plant Soil 173:157–165

    Article  CAS  Google Scholar 

  • Dvoràk M, Cernohorska J, Janacek K (1981) Characteristics of current passage through plant tissue. Biol Plant 23:306–310

    Article  Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Phil Trans Roy Soc London Ser A222:309–368

    Article  Google Scholar 

  • Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. In: Bourne JR (ed) Critical reviews in biomedical engineering. CRC, Boca Raton, FL, pp 25–104

    Google Scholar 

  • Geddes LA, Baker LE (1989) Principles of applied biomedical instrumentation. Wiley, New York

    Google Scholar 

  • Guegan Q, Foulc JN (2009) Electrical characterization of the solid phase (particles) of electrorheological fluids. J Physics: Conf Ser 149(012006):1–4

    Google Scholar 

  • Grimnes S, Martinsen OG (2008) Bioimpedance and bioelectricity basics, 2nd edn. Academic, San Diego

    Google Scholar 

  • Hilhorst MA (1998) Dielectric characterisation of soil. Doctorol thesis. Wageningen Agriculture University, Wageningen

    Google Scholar 

  • Hirano Y, Dannoura M, Aono K, Igarashi T, Ishii M, Yamse K, Makita N, Kanazawa Y (2009) Limiting factors in the diction of tree roots using ground-penetrating radar. Plant Soil 319:15–24

    Article  CAS  Google Scholar 

  • Kendall WA, Pederson GA, Hill RR (1982) Root size estimates of red clover and alfalfa based on electrical capacitance and root diameter measurements. Grass For Sci 37:253–256

    Article  Google Scholar 

  • Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  • Majdi H (1996) Root sampling methods – applications and limitations of the minirhizotron technique. Plant Soil 185:255–258

    Article  CAS  Google Scholar 

  • McBride R, Candido M, Ferguson J (2008) Estimating root mass in maize genotypes using the electrical capacitance method. Arch Agr Soil Sci 54:215–226

    Article  Google Scholar 

  • Ozier-Lafontaine H, Bajazet T (2005) Analysis of root growth by impedance spectroscopy. Plant Soil 277:299–313

    Article  CAS  Google Scholar 

  • Preston GM, McBride RA, Bryan J, Candido M (2004) Estimating root mass in young poplar trees using the electrical capacitance method. Agrofor Syst 60:305–309

    Article  Google Scholar 

  • Psarras G, Merwin IA (2000) Water stress affects rhizosphere respiration rates and root morphology of young Mutsu’ apple trees on M.9 and MM.111 rootstocks. J Am Soc Hort Sci 125:588–595

    Google Scholar 

  • Ragheb T, Geddes LA (1990) Electrical properties of metallic electrodes. Med Biol Eng Comp 28:182–186

    Article  CAS  Google Scholar 

  • Rajkai K, Vegh KR, Nacsa T (2005) Electrical capacitance of roots in relation to plant electrodes, measuring frequency and root media. Acta Agr Hung 53:197–210

    Article  Google Scholar 

  • Repo T, Zhang G, Ryyppö A, Rikala R (2000) The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation. J Exp Bot 51:2095–2107

    Article  PubMed  CAS  Google Scholar 

  • Repo T, Zhang MIN (1993) Modelling woody plant tissues using a distributed electrical circuit. J Exp Bot 44:977–982

    Article  Google Scholar 

  • Repo T, Zhang MIN, Ryyppö A, Vapaavuori E, Sutinen S (1994) Effects of freeze-thaw injuring on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation. J Exp Bot 45:823–833

    Article  Google Scholar 

  • Repo T, Pulli S (1996) Application of impedance spectroscopy for selecting frost hardy varieties of English ryegrass. Ann Bot 78:605–609

    Article  Google Scholar 

  • Repo T, Oksanen E, Vapaavuori E (2004) Effects of elevated concentration of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones. Tree Physiol 24:833–843

    Article  PubMed  CAS  Google Scholar 

  • Repo T, Laukkanen J, Silvennoinen R (2005) Measurement of tree root growth using electrical impedance spectroscopy. Silva Fenn 39:159–166

    Google Scholar 

  • Rhoades JD, Raats PAC, Prather RJ (1976) Effects of liquid-phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity. Soil Sci Soc Am J 40:651–655

    Article  Google Scholar 

  • Ryyppö A, Repo T, Vapaavuori E (1998) Development of freezing tolerance in roots and shoots of Scots pine seedlings at non-freezing temperatures. Can J For Res 28:557–567

    Article  Google Scholar 

  • Samson BK, Sinclair TR (1994) Soil core and minirhizotron comparison for determination of root length density. Plant Soil 161:225–232

    Article  Google Scholar 

  • Schanne OF, Ruiz-Ceretti E (1978) Impedance measurements in biological cells. Wiley, New York

    Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. In: Lawrence JH, Tobias CA (eds) Advances in biological and medical physics, vol 5. Academic, New York, pp 147–209

    Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research, vol 6. Academic, New York, pp 323–406

    Google Scholar 

  • Schwan HP (1988) Biological effects of non-ionizing radiations: cellular properties and interactions. Ann Biomed Eng 16:245–263

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP (1992) Linear and nonlinear electrode polarisation and biological materials. Ann Biomed Eng 20:269–288

    Article  PubMed  CAS  Google Scholar 

  • Schwan HP, Takashima S (1991) Dielectric behaviour of biological cells and membranes. Bull Inst Chem Res 69:459–475

    CAS  Google Scholar 

  • Schwarz G (1962) A theory of the low frequency dielectric dispersion of colloidal particles in electrolytes solutions. J Phys Chem 66:26–36

    Google Scholar 

  • Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (2000) Root methods: a handbook. Springer, New York

    Book  Google Scholar 

  • Srinivas K, Sarah P, Suryanarayana SV (2003) Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18. Bull Mater Sci 26:247–253

    Article  CAS  Google Scholar 

  • Thomasset AL, Lenoir J, Jenin MP, Roudlet Cand Ducros MH (1973) Appréciation de la situation électrolytique tissulaire par le rapport des impédances corporelles du corps humain en basses et hautes fréquences. Rev Médec Aéronaut Spot 46:312–315

    Google Scholar 

  • Tiitta M, Savolainen T, Olkkonen H, Kanko T (1999) Woody moisture gradient analysis by electrical impedance spectroscopy. Holzforsch 53:68–76

    Article  CAS  Google Scholar 

  • van Beem J, Smith ME, Zobel RW (1998) Estimating root mass in maize using a portable capacitance meter. Agr J 90:566–570

    Article  Google Scholar 

  • Zhang MIN, Stout DG, Willison JHM (1992) Plant tissue impedance and cold acclimation: a re-analysis. J Exp Bot 43:263–266

    Article  Google Scholar 

  • Zhang MIN, Willison JMH (1991) Electrical impedance analysis in plant tissues: a double shell model. J Exp Bot 42:1465–75

    Article  Google Scholar 

  • Zhang MIN, Willison JHM (1993) Electrical impedance analysis in plant tissues: impedance measurement in leaves. J Exp Bot 44:1369–1375

    Article  Google Scholar 

Download references

Acknowledgements

We should like to thank Dr Tarja Lehto and Dr Marja Roitto for their comments and Dr John A Stotesbury for the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapani Repo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Repo, T., Cao, Y., Silvennoinen, R., Ozier-Lafontaine, H. (2012). Electrical Impedance Spectroscopy and Roots. In: Mancuso, S. (eds) Measuring Roots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22067-8_2

Download citation

Publish with us

Policies and ethics