Skip to main content

An O(logn)-Competitive Algorithm for Online Constrained Forest Problems

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

In the generalized Steiner tree problem, we find a minimum-cost set of edges to connect a given set of source-sink pairs. In the online version of this problem, the source-sink pairs arrive over time. Agrawal, Klein, and Ravi [1] give a 2-approximation algorithm for the offline problem; Berman and Coulston [3] give an O(logn)-competitive algorithm for the online problem. Goemans and Williamson [4] subsequently generalized the offline algorithm of Agrawal et al. to handle a large class of problems they called constrained forest problems, and other problems, such as the prize-collecting Steiner tree problem. In this paper, we show how to combine the ideas of Goemans and Williamson and those of Berman and Coulston to give an O(logn)-competitive algorithm for online constrained forest problems, including an online version of the prize-collecting Steiner tree problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation algorithm for the generalized Steiner problem on networks. SIAM Journal on Computing 24, 440–456 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B., Azar, Y., Bartal, Y.: On-line generalized Steiner problem. Theoretical Computer Science 324, 313–324 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, P., Coulston, C.: On-line algorithms for Steiner tree problems. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 344–353 (1997)

    Google Scholar 

  4. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24, 296–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goemans, M., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, E., Williamson, D.: Improved approximation algorithms for network design problems. In: Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 223–232 (1994)

    Google Scholar 

  6. Gupta, A., Krishnaswamy, R., Ravi, R.: Online and stochastic survivable network design. In: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp. 685–694 (2009)

    Google Scholar 

  7. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Discrete Mathematics 4, 369–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized Steiner network problems. Combinatorica 15, 435–454 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qian, J., Williamson, D.P. (2011). An O(logn)-Competitive Algorithm for Online Constrained Forest Problems. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics