Skip to main content

Multiple Time-Series Prediction through Multiple Time-Series Relationships Profiling and Clustered Recurring Trends

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

Time-series prediction has been very well researched by both the Statistical and Data Mining communities. However the multiple time-series problem of predicting simultaneous movement of a collection of time sensitive variables which are related to each other has received much less attention. Strong relationships between variables suggests that trajectories of given variables that are involved in the relationships can be improved by including the nature and strength of these relationships into a prediction model. The key challenge is to capture the dynamics of the relationships to reflect changes that take place continuously over time. In this research we propose a novel algorithm for extracting profiles of relationships through an evolving clustering method. We use a form of non-parametric regression analysis to generate predictions based on the profiles extracted and historical information from the past. Experimental results on a real-world climatic data reveal that the proposed algorithm outperforms well established methods of time-series prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins, D., Biekpe, N.: Contagion and Interdependence in African Stock Markets. The South African Journal of Economics 71(1), 181–194 (2003)

    Article  Google Scholar 

  2. Masih, A., Masih, R.: Dynamic Modeling of Stock Market Interdependencies: An Empirical Investigation of Australia and the Asian NICs. Working Papers 98-18, pp. 1323–9244. University of Western Australia (1998)

    Google Scholar 

  3. Antoniou, A., Pescetto, G., Violaris, A.: Modelling International Price Relationships and Interdependencies between the Stock Index and Stock Index Future Markets of Three EU Countries: A Multivariate Analysis. Journal of Business, Finance and Accounting 30, 645–667 (2003)

    Article  Google Scholar 

  4. Kasabov, N., Chan, Z., Jain, V., Sidorov, I., Dimitrov, D.: Gene Regulatory Network Discovery from Time-series Gene Expression Data: A Computational Intelligence Approach. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 1344–1353. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Friedman, L., Nachman, P.: Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  6. Liu, B., Liu, J.: Multivariate Time Series Prediction via Temporal Classification. In: Proc. IEEE ICDE 2002, pp. 268–275. IEEE, Los Alamitos (2002)

    Google Scholar 

  7. Kim, T., Adali, T.: Approximation by Fully Complex Multilayer Perceptrons. Neural Computation 15, 1641–1666 (2003)

    Article  MATH  Google Scholar 

  8. Yang, H., Chan, L., King, I.: Support Vector Machine Regression for Volatile Stock Market Prediction. In: Yellin, D.M. (ed.) Attribute Grammar Inversion and Source-to-source Translation. LNCS, vol. 302, pp. 143–152. Springer, Heidelberg (1988)

    Google Scholar 

  9. Zanghui, Z., Yau, H., Fu, A.M.N.: A new stock price prediction method based on pattern classification. In: Proc. IJCNN 1999, pp. 3866–3870. IEEE, Los Alamitos (1999)

    Google Scholar 

  10. Holland, J.H., Holyoak, K.J., Nisbett, R.E., Thagard, P.R.: Induction: Processes of Inference, Learning and Discovery, Cambridge, MA, USA (1989)

    Google Scholar 

  11. Kasabov, N.: Global, Local and Personalised Modelling and Pattern Discovery in Bioinformatics: An Integrated Approach. Pattern Recognition Letters 28, 673–685 (2007)

    Article  Google Scholar 

  12. Song, Q., Kasabov, N.: ECM - A Novel On-line Evolving Clustering Method and Its Applications. In: Posner, M.I. (ed.) Foundations of Cognitive Science, pp. 631–682. MIT Press, Cambridge (2001)

    Google Scholar 

  13. Rodrigues, P., Gama, J., Pedroso, P.: Hierarchical Clustering of Time-Series Data Streams. IEEE TKDE 20(5), 615–627 (2008)

    Google Scholar 

  14. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Journal of Computational Biology 6(3/4), 281–297 (1999)

    Article  Google Scholar 

  15. Widiputra, H., Kho, H., Lukas, Pears, R., Kasabov, N.: A Novel Evolving Clustering Algorithm with Polynomial Regression for Chaotic Time-Series Prediction. In: Leung, C.S., Lee, M., Chan, J.H. (eds.) ICONIP 2009. LNCS, vol. 5864, pp. 114–121. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Vitousek, P.M.: Beyond Global Warming: Ecology and Global Change. Ecology 75(7), 1861–1876 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Widiputra, H., Pears, R., Kasabov, N. (2011). Multiple Time-Series Prediction through Multiple Time-Series Relationships Profiling and Clustered Recurring Trends. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics