Skip to main content

Gene Regulatory Network Discovery from Time-Series Gene Expression Data – A Computational Intelligence Approach

  • Conference paper
Neural Information Processing (ICONIP 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3316))

Included in the following conference series:

Abstract

The interplay of interactions between DNA, RNA and proteins leads to genetic regulatory networks (GRN) and in turn controls the gene regulation. Directly or indirectly in a cell such molecules either interact in a positive or in repressive manner therefore it is hard to obtain the accurate computational models through which the final state of a cell can be predicted with certain accuracy. This paper describes biological behaviour of actual regulatory systems and we propose a novel method for GRN discovery of a large number of genes from multiple time series gene expression observations over small and irregular time intervals. The method integrates a genetic algorithm (GA) to select a small number of genes and a Kalman filter to derive the GRN of these genes. After GRNs of smaller number of genes are obtained, these GRNs may be integrated in order to create the GRN of a larger group of genes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baeck, T., Fogel, D.B., et al.: Evolutionary Computation I and II. Advanced algorithm and operators. Institute of Physics Pub., Bristol (2000)

    Book  Google Scholar 

  2. Bay, J.S. (ed.): Fundamentals of Linear State Space Systems. WCB/McGraw-Hill (1999)

    Google Scholar 

  3. Bolouri, H., Bower, J.M. (eds.): Computational modelling of Genetic and Biochemical Networks. The MIT Press, London (2001)

    Google Scholar 

  4. Brown, R.G. (ed.): Introduction to Random Signal Analysis and Kalman Filtering. John Wiley & Son, Chichester (1983)

    Google Scholar 

  5. Brownstein, M.J., Trent, J.M., Boguski, M.S.: Functional genomics. In: Patterson, M., Handel, M. (eds.) Trends Guide to Bioinformatics, pp. 27–29 (1998)

    Google Scholar 

  6. Collado-Vides, J.: A transformational-grammar approach to study the regulation of gene expression. J. Theor. Biol. 136, 403–425 (1989)

    Article  Google Scholar 

  7. Dorf, R., Bishop, R.H.: Modern Control Systems. Prentice-Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  8. Fields, S., Kohara, Y., Lockhart, D.J.: Functional genomics. Proc. Natl. Acad. Sci. USA 96, 8825–8826 (1999)

    Article  Google Scholar 

  9. Friedman, L., Nachman, P.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  11. Hofestadt, R., Meineke, F.: Interactive modelling and simulation of biochemical networks. Comput. Biol. Med. 25, 321–334 (1995)

    Article  Google Scholar 

  12. Holland, H.: Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  13. Kasabov, N., Dimitrov, D.: A method for gene regulatory network modelling with the use of evolving connectionist systems. In: ICONIP - International Conference on Neuro-Information Processing. IEEE Press, Singapore (2002)

    Google Scholar 

  14. Likhoshvai, V.A., Matushkin, Y.G., Vatolin, Y.N., Bazan, S.I.: A generalized chemical kinetic method for simulating complex biological systems. A computer model of lambda phage ontogenesis. Computational technol. 5(2), 87–89 (2000)

    Google Scholar 

  15. Loomis, W.F., Sternberg, P.W.: Genetic networks. Science 269, 649 (1995)

    Article  Google Scholar 

  16. Mc Adams, H.H., Aarkin, A.: Stochastic mechanism in gene expression. Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

    Article  Google Scholar 

  17. Muhlenbein, H.: How genetic algorithms really work: I. mutation and hillclimbing. In: Manderick, B. (ed.) Parallel Problem Solving from Nature 2. Elsevier, Amsterdam (1992)

    Google Scholar 

  18. Sanchez, L., van Helden, J., Thieffry, D.: Establishment of the dorso-ventral pattern during embryonic development of Drosophila melanogaster. A logical analysis. J. Theor. Biol. 189, 377–389 (1997)

    Google Scholar 

  19. Tchuraev, R.N.: A new method for the analysis of the dynamics of the molecular genetic control systems. I. Description of the method of generalized threshold models. J. Theor. Biol. 151, 71–87 (1991)

    Article  Google Scholar 

  20. Thieffry, D.: From global expression data to gene networks. BioEssays 21(11), 895–899 (1999)

    Article  MathSciNet  Google Scholar 

  21. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks-II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasabov, N.K., Chan, Z.S.H., Jain, V., Sidorov, I., Dimitrov, D.S. (2004). Gene Regulatory Network Discovery from Time-Series Gene Expression Data – A Computational Intelligence Approach. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds) Neural Information Processing. ICONIP 2004. Lecture Notes in Computer Science, vol 3316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30499-9_209

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30499-9_209

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23931-4

  • Online ISBN: 978-3-540-30499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics