Skip to main content

Evolutionary Dynamics and Genomic Impact of Prokaryote Transposable Elements

  • Chapter
  • First Online:
Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution

Abstract

Transposable elements (TEs) are one of the major forces that drive prokaryote genome evolution. Analyses of TE evolutionary dynamics revealed extensive variability in TE density between prokaryote genomes, even closely related ones. To explain this variability, a model of recurrent invasion/proliferation/extinction cycles has been proposed. In this chapter, we examine different parameters that influence these cycles in two of the simplest TE classes: insertion sequences and group II introns. In particular, we discuss TE transposition efficiency (mechanisms and regulation), ability to transfer horizontally (through plasmids and phages), and impact on genome evolution (gene activation/inactivation and structural variation). Finally, we describe TE dynamics in bacterial endosymbionts, especially in Wolbachia, to illustrate the importance of host population size in prokaryote TE evolution.

N. Cerveau and S. Leclercq are co-first authors of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Safadi R, Amor S, Hery-Arnaud G, Spellerberg B, Lanotte P, Mereghetti L, Gannier F, Quentin R, Rosenau A (2010) Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS ONE 5:e10794

    Article  PubMed  CAS  Google Scholar 

  • Barker CS, Pruss BM, Matsumura P (2004) Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537

    Article  PubMed  CAS  Google Scholar 

  • Basten CJ, Moody ME (1991) A branching-process model for the evolution of transposable elements incorporating selection. J Math Biol 29:743–761

    Article  PubMed  CAS  Google Scholar 

  • Belda E, As M, Bentley S, Silva FJ (2010) Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 11:449

    Article  PubMed  CAS  Google Scholar 

  • Beuzon CR, Marquas S, Casadesus J (1999) Repression of IS200 transposase synthesis by RNA secondary structures. Nucleic Acids Res 27:3690–3695

    Article  PubMed  CAS  Google Scholar 

  • Bichsel M, Barbour AD, Wagner A (2010) The early phase of a bacterial insertion sequence infection. Theor Popul Biol 78:278–288

    Article  PubMed  Google Scholar 

  • Bisercic M, Ochman H (1993) The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J Bacteriol 175:7863–7868

    PubMed  CAS  Google Scholar 

  • Blot M (1994) Transposable elements and adaptation of host bacteria. Genetica 93:5–12

    Article  PubMed  CAS  Google Scholar 

  • Bordenstein SR, Reznikoff WS (2005) Mobile DNA in obligate intracellular bacteria. Nat Rev Microbiol 3:688–699

    Article  PubMed  CAS  Google Scholar 

  • Brügger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32:179–183

    Article  PubMed  Google Scholar 

  • Burrus V, Pavlovic G, Decaris B, Guedon G (2002) Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610

    Article  PubMed  CAS  Google Scholar 

  • Casadesus J, Naas T, Garzon A, Arini A, Torreblanca J, Arber W (1999) Lack of hotspot targets: a constraint for IS30 transposition in Salmonella. Gene 238:231–239

    Article  PubMed  CAS  Google Scholar 

  • Chandler M, Mahillon J (2002) Insertion sequences revisited. In: Craig NL et al (eds) Mobile DNA II. ASM Press, Washington, DC, pp 305–366

    Google Scholar 

  • Charlier D, Piette J, Glansdorff N (1982) IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res 10:5935–5948

    Article  PubMed  CAS  Google Scholar 

  • Chen YM, Lu Z, Lin EC (1989) Constitutive activation of the fucAO operon and silencing of the divergently transcribed fucPIK operon by an IS5 element in Escherichia coli mutants selected for growth on L-1,2-propanediol. J Bacteriol 171:6097–6105

    PubMed  CAS  Google Scholar 

  • Chillon I, Martinez-Abarca F, Toro N (2011) Splicing of the Sinorhizobium meliloti RmInt1 group II intron provides evidence of retroelement behavior. Nucleic Acids Res 39:1095–1104

    PubMed  Google Scholar 

  • Cooper VS, Schneider D, Blot M, Lenski RE (2001) Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol 183:2834–2841

    Article  PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. EMBO J 10:433–442

    PubMed  CAS  Google Scholar 

  • Cordaux R (2008) ISWpi1 from Wolbachia pipientis defines a novel group of insertion sequences within the IS5 family. Gene 409:20–27

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R (2009) Gene conversion maintains nonfunctional transposable elements in an obligate mutualistic endosymbiont. Mol Biol Evol 26:1679–1682

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  CAS  Google Scholar 

  • Cordaux R, Michel-Salzat A, Bouchon D (2001) Wolbachia infections in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol 14:237–243

    Article  CAS  Google Scholar 

  • Cordaux R, Pichon S, Ling A, Perez P, Delaunay C, Vavre F, Bouchon D, Greve P (2008) Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont. Mol Biol Evol 25:1889–1896

    Article  PubMed  CAS  Google Scholar 

  • Cousineau B, Lawrence S, Smith D, Belfort M (2000) Retrotransposition of a bacterial group II intron. Nature 404:1018–1021

    Article  PubMed  CAS  Google Scholar 

  • Creuzburg K, Jr R, Kuhle V, Herold S, Hensel M, Schmidt H (2005) The Shiga toxin 1-converting bacteriophage BP-4795 encodes an NleA-like type III effector protein. J Bacteriol 187:8494–8498

    Article  PubMed  CAS  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  PubMed  CAS  Google Scholar 

  • Dai L, Zimmerly S (2002) The dispersal of five group II introns among natural populations of Escherichia coli. RNA 8:1294–1307

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  PubMed  CAS  Google Scholar 

  • Dodson KW, Berg DE (1989) Factors affecting transposition activity of IS50 and Tn5 ends. Gene 76:207–213

    Article  PubMed  CAS  Google Scholar 

  • Duval-Valentin G, Marty-Cointin B, Chandler M (2004) Requirement of IS911 replication before integration defines a new bacterial transposition pathway. EMBO J 23:3897–3906

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Paramo P, Ghosh S, DiRuggiero J (2005) Evidence for genetic drift in the diversification of a geographically isolated population of the hyperthermophilic archaeon Pyrococcus. Mol Biol Evol 22:2297–2303

    Article  PubMed  CAS  Google Scholar 

  • Escoubas JM, Prere MF, Fayet O, Salvignol I, Galas D, Zerbib D, Chandler M (1991) Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J 10:705–712

    PubMed  CAS  Google Scholar 

  • Felsheim RF, Kurtti TJ, Munderloh UG (2009) Genome sequence of the endosymbiont Rickettsia peacockii and comparison with virulent Rickettsia rickettsii: identification of virulence factors. PLoS ONE 4:e8361

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Lopez M, Munoz-Adelantado E, Gillis M, Willems A, Toro N (2005) Dispersal and evolution of the Sinorhizobium meliloti group II RmInt1 intron in bacteria that interact with plants. Mol Biol Evol 22:1518–1528

    Article  PubMed  CAS  Google Scholar 

  • Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B (2005) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121

    Article  PubMed  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  PubMed  CAS  Google Scholar 

  • Fuxelius H-H, Darby AC, Cho N-H, Andersson SGE (2008) Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction. Genome Biol 9:R42

    Article  PubMed  CAS  Google Scholar 

  • Garcillan-Barcia MP, Bernales I, Mendiola MV, De la Cruz F (2002) IS91 Rolling-circle transposition. In: Craig NL et al (eds) Mobile DNA II. ASM Press, Washington, DC, pp 891–904

    Google Scholar 

  • Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    Article  PubMed  CAS  Google Scholar 

  • Hall BG, Parker LL, Betts PW, DuBose RF, Sawyer SA, Hartl DL (1989) IS103, a new insertion element in Escherichia coli: characterization and distribution in natural populations. Genetics 121:423–431

    PubMed  CAS  Google Scholar 

  • Han K, Xing J, Wang H, Hedges DJ, Garber RK, Cordaux R, Batzer MA (2005) Under the genomic radar: the stealth model of Alu amplification. Genome Res 15:655–664

    Article  PubMed  CAS  Google Scholar 

  • Ichiyanagi K, Beauregard A, Belfort M (2003) A bacterial group II intron favors retrotransposition into plasmid targets. Proc Natl Acad Sci USA 100:15742–15747

    Article  PubMed  CAS  Google Scholar 

  • Jaurin B, Normark S (1983) Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell 32:809–816

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569–6574

    Article  PubMed  CAS  Google Scholar 

  • Kent BN, Bordenstein SR (2010) Phage WO of Wolbachia: lambda of the endosymbiont world. Trends Microbiol 18:173–181

    Article  PubMed  CAS  Google Scholar 

  • Kiss J, Nagy Z, Toth G, Kiss G, Jakab J, Chandler M, Olasz F (2007) Transposition and target specificity of the typical IS30 family element IS1655 from Neisseria meningitidis. Mol Microbiol 63:1731–1747

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O’Neill SL, Thomson N, Sinkins SP, Parkhill J (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Klasson L, Westberg J, Sapountzis P, Naslund K, Lutnaes Y, Darby AC, Veneti Z, Chen L, Braig HR, Garrett R, Bourtzis K, Andersson SGE (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106:5725–5730

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2010) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003616

    Google Scholar 

  • Lawrence JG, Ochman H, Hartl DL (1992) The evolution of insertion sequences within enteric bacteria. Genetics 131:9–20

    PubMed  CAS  Google Scholar 

  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol 9:535–540

    Article  PubMed  CAS  Google Scholar 

  • Leclercq S, Giraud I, Cordaux R (2011) Remarkable abundance and evolution of mobile group II introns in Wolbachia bacterial endosymbionts. Mol Biol Evol 28:685–697

    PubMed  Google Scholar 

  • Lewis LA, Grindley ND (1997) Two abundant intramolecular transposition products, resulting from reactions initiated at a single end, suggest that IS2 transposes by an unconventional pathway. Mol Microbiol 25:517–529

    Article  PubMed  CAS  Google Scholar 

  • Ling A, Cordaux R (2010) Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats. PLoS ONE 5:e15654

    Google Scholar 

  • Lobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR (2004) Genome of bacteriophage P1. J Bacteriol 186:7032–7068

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Abarca F, Toro N (2000) RecA-independent ectopic transposition in vivo of a bacterial group II intron. Nucleic Acids Res 28:4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Michel F, Costa M, Doucet AJ, Ferat J-L (2007) Specialized lineages of bacterial group II introns. Biochimie 89:542–553

    Article  PubMed  CAS  Google Scholar 

  • Mira A, Moran NA (2002) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44:137–143

    Article  PubMed  CAS  Google Scholar 

  • Mira A, Pushker R, Rodriguez-Valera F (2006) The neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206

    Article  PubMed  CAS  Google Scholar 

  • Mohr G, Ghanem E, Lambowitz AM (2010) Mechanisms used for genomic proliferation by thermophilic group II introns. PLoS Biol 8:e1000391

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633

    Article  PubMed  CAS  Google Scholar 

  • Moretz SE, Lampson BC (2010) A group IIC-type intron interrupts the rRNA methylase gene of Geobacillus stearothermophilus strain 10. J Bacteriol 192:5245–5248

    Article  PubMed  CAS  Google Scholar 

  • Mormann S, Lomker A, Ruckert C, Gaigalat L, Tauch A, Puhler A, Kalinowski J (2006) Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 7:205

    Article  PubMed  CAS  Google Scholar 

  • Mullany P, Pallen M, Wilks M, Stephen JR, Tabaqchali S (1996) A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174:145–150

    Article  PubMed  CAS  Google Scholar 

  • Naas T, Blot M, Fitch WM, Arber W (1994) Insertion sequence-related genetic variation in resting Escherichia coli K-12. Genetics 136:721–730

    PubMed  CAS  Google Scholar 

  • Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, Fukuhara M, Urakami H, Ohnishi M, Uchiyama I, Ogura Y, Ooka T, Oshima K, Tamura A, Hattori M, Hayashi T (2008) The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res 15:185–199

    Article  PubMed  CAS  Google Scholar 

  • Naville M, Gautheret D (2010) Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation. Genome Biol 11:R97

    Article  PubMed  CAS  Google Scholar 

  • Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D, Faust J, Hall B, Loretz C, Seto J, Slagel J, Hood L, DasSarma S (1998) Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res 8:1131–1141

    PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Ohtsubo E, Minematsu H, Tsuchida K, Ohtsubo H, Sekine Y (2004) Intermediate molecules generated by transposase in the pathways of transposition of bacterial insertion element IS3. Adv Biophys 38:125–139

    Article  CAS  Google Scholar 

  • Olasz F, Kiss J, Konig P, Buzas Z, Stalder R, Arber W (1998) Target specificity of insertion element IS30. Mol Microbiol 28:691–704

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40

    Article  PubMed  Google Scholar 

  • Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S (2010) Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 6:e1000799

    Article  CAS  Google Scholar 

  • Poluektova EU, Holsappel S, Gagarina EI, Bron S, Prozorov AA (2002) The ISBsu2 mobile element is present in a plasmid of a soil strain and in the chromosomes of several other strains of Bacillus subtilis. Genetika 38:1719–1722

    PubMed  CAS  Google Scholar 

  • Qiu N, He J, Wang Y, Cheng G, Li M, Sun M, Yu Z (2010) Prevalence and diversity of insertion sequences in the genome of Bacillus thuringiensis YBT-1520 and comparison with other Bacillus cereus group members. FEMS Microbiol Lett 310:9–16

    Article  PubMed  CAS  Google Scholar 

  • Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286

    Article  PubMed  CAS  Google Scholar 

  • Robart AR, Seo W, Zimmerly S (2007) Insertion of group II intron retroelements after intrinsic transcriptional terminators. Proc Natl Acad Sci USA 104:6620–6625

    Article  PubMed  CAS  Google Scholar 

  • Roberts D, Hoopes BC, McClure WR, Kleckner N (1985) IS10 transposition is regulated by DNA adenine methylation. Cell 43:117–130

    Article  PubMed  CAS  Google Scholar 

  • Rocha EPC (2008) The organization of the bacterial genome. Annu Rev Genet 42:211–233

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez H, Snow ET, Bhat U, Loechler EL (1992) An Escherichia coli plasmid-based, mutational system in which supF mutants are selectable: insertion elements dominate the spontaneous spectra. Mutat Res 270:219–231

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K, Fujinaga Y, Ohnishi M, Ohtsubo E, Hattori M, Oguma K (2005) The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102:17472–17477

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SA, Dykhuizen DE, DuBose RF, Green L, Mutangadura-Mhlanga T, Wolczyk DF, Hartl DL (1987) Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115:51–63

    PubMed  CAS  Google Scholar 

  • Schneider D, Lenski RE (2004) Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol 155:319–327

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Duperchy E, Coursange E, Lenski RE, Blot M (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156:477–488

    PubMed  CAS  Google Scholar 

  • Schwartz E, Herberger C, Rak B (1988) Second-element turn-on of gene expression in an IS1 insertion mutant. Mol Gen Genet 211:282–289

    Article  PubMed  CAS  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Siguier P, Filee J, Chandler M (2006) Insertion sequences in prokaryotic genomes. Curr Opin Microbiol 9:526–531

    Article  PubMed  CAS  Google Scholar 

  • Simser JA, Rahman MS, Dreher-Lesnick SM, Azad AF (2005) A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol Microbiol 58:71–79

    Article  PubMed  CAS  Google Scholar 

  • Skorski P, Proux F, Cheraiti C, Dreyfus M, Hermann-Le Denmat S (2007) The deleterious effect of an insertion sequence removing the last twenty percent of the essential Escherichia coli rpsA gene is due to mRNA destabilization, not protein truncation. J Bacteriol 189:6205–6212

    Article  PubMed  CAS  Google Scholar 

  • Sleight SC, Orlic C, Schneider D, Lenski RE (2008) Genetic basis of evolutionary adaptation by Escherichia coli to stressful cycles of freezing, thawing and growth. Genetics 180:431–443

    Article  PubMed  Google Scholar 

  • Sun X, Dennis JJ (2009) A novel insertion sequence derepresses efflux pump expression and preadapts Pseudomonas putida S12 for extreme solvent stress. J Bacteriol 191:6773–6777

    Article  PubMed  CAS  Google Scholar 

  • Sundin GW (2007) Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. Annu Rev Phytopathol 45:129–151

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Furukawa S, Nikoh N, Sasaki T, Fukatsu T (2009) Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol 75:5676–5686

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Gotker S, Puhler A, Jr K, Thierbach G (2002) The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48:117–129

    Article  PubMed  CAS  Google Scholar 

  • Tomcsanyi T, Berg DE (1989) Transposition effect of adenine (Dam) methylation on activity of O end mutants of IS50. J Mol Biol 209:191–193

    Article  PubMed  CAS  Google Scholar 

  • Ton-Hoang B, Pasternak C, Siguier P, Guynet C, Hickman AB, Dyda F, Sommer S, Chandler M (2010) Single-stranded DNA transposition is coupled to host replication. Cell 142:398–408

    Article  PubMed  CAS  Google Scholar 

  • Toro N, Jimenez-Zurdo J, Garcia-Rodriguez FM (2007) Bacterial group II introns: not just splicing. FEMS Microbiol Rev 31:342–358

    Article  PubMed  CAS  Google Scholar 

  • Touchon M, Rocha EPC (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24:969–981

    Article  PubMed  CAS  Google Scholar 

  • Tourasse NJ, Kolsto A-B (2008) Survey of group I and group II introns in 29 sequenced genomes of the Bacillus cereus group: insights into their spread and evolution. Nucleic Acids Res 36:4529–4548

    Article  PubMed  CAS  Google Scholar 

  • Toussaint A, Merlin C (2002) Mobile elements as a combination of functional modules. Plasmid 47:26–35

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan MM, Goldberg MB, Rose DJ, Grotbeck EJ, Burland V, Blattner FR (2001) Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 69:3271–3285

    Article  PubMed  CAS  Google Scholar 

  • Vögele K, Schwartz E, Welz C, Schiltz E, Rak B (1991) High-level ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res 19:4377–4385

    Article  PubMed  Google Scholar 

  • Wagner A (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, de la Chaux N (2008) Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences. Mol Genet Genomics 280:397–408

    Article  PubMed  CAS  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  PubMed  CAS  Google Scholar 

  • Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15:572–583

    Article  PubMed  CAS  Google Scholar 

  • Wery J, Hidayat B, Kieboom J, de Bont JA (2001) An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276:5700–5706

    Article  PubMed  CAS  Google Scholar 

  • Wilde C, Escartin F, Kokeguchi S, Latour-Lambert P, Lectard A, Clement J-M (2003) Transposases are responsible for the target specificity of IS1397 and ISKpn1 for two different types of palindromic units (PUs). Nucleic Acids Res 31:4345–4353

    Article  PubMed  CAS  Google Scholar 

  • Wolk CP, Lechno-Yossef S, Jager KM (2010) The insertion sequences of Anabaena sp. strain PCC 7120 and their effects on its open reading frames. J Bacteriol 192:5289–5303

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

    Article  PubMed  Google Scholar 

  • Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:6445–6458

    Article  PubMed  Google Scholar 

  • Zhang Z, Saier MH Jr (2009) A novel mechanism of transposon-mediated gene activation. PLoS Genet 5:e1000689

    Article  PubMed  CAS  Google Scholar 

  • Zinser ER, Schneider D, Blot M, Kolter R (2003) Bacterial evolution through the selective loss of beneficial genes. Trade-offs in expression involving two loci. Genetics 164:1271–1277

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cordaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cerveau, N., Leclercq, S., Bouchon, D., Cordaux, R. (2011). Evolutionary Dynamics and Genomic Impact of Prokaryote Transposable Elements. In: Pontarotti, P. (eds) Evolutionary Biology – Concepts, Biodiversity, Macroevolution and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20763-1_17

Download citation

Publish with us

Policies and ethics