Skip to main content

Effects of Hypothetical Complex Mass-Density Distributions on Geoidal Height

  • Conference paper
  • First Online:
Geodesy for Planet Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 136))

Abstract

Geoid computation according to the Stokes-Helmert scheme requires accurate modelling of the variations of mass-density within topography. Current topographical models used in this scheme consider only horizontal variations, although in reality density varies three-dimensionally. Insufficient knowledge of regional three-dimensional density distributions prevents evaluation from real data. In light of this deficiency, we attempt to estimate the order of magnitude of the error in geoidal heights caused by neglecting the depth variations by calculating, for artificial but realistic mass-density distributions, the difference between results from 2D and 3D models.

Our previous work has shown that for simulations involving simple mass-density distributions in the form of planes, discs or wedges, the effect of mass-density variation unaccounted for in 2D models can reach centimeter-level magnitude in areas of high elevation, or where large mass-density contrasts exist. However, real mass-density distributions are more complicated than those we have modeled so far, and involve multiple structures whose effects might mitigate each other. We form a more complex structure by creating an array of discs that individually we expect to have a very significant effect, and show that while the contribution of such an array to the direct topographical effect on geoidal height is sub centimeter (0.85 cm for our simulation), the resulting primary indirect topographical effect may reach several centimeters or more (5 cm for our simulation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baran I, Kuhn M, Claessens SJ, Featherstone WE, Holmes SA, Vaníček P (2006) A synthetic Earth gravity model designed specifically for testing regional gravimetric geoid determination algorithms. J Geod 80:1–16

    Article  Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Bessel FW (1813) Auszug aus einem Schreiben des Herrn Prof. Bessel. Zach’s Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde, XXVII, pp 80–85

    Google Scholar 

  • Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J Geod 81:121–136

    Article  Google Scholar 

  • Huang J, Vaníček P, Pagiatakis S, Brink W (2001) Effect of topographical density variation on geoid in the Canadian Rocky Mountains. J Geod 74:805–815

    Article  Google Scholar 

  • Kingdon R, Vaníček P, Santos M (2009) First results and testing of a forward modelling approach for estimation of 3D density effects on geoidal heights. Canad J Earth Sci 46(8):571–585. doi:10.1139/E09-018

    Article  Google Scholar 

  • Kuhn M (2003) Geoid determination with density hypotheses from isostatic models and geological information. J Geod 77:50–65

    Article  Google Scholar 

  • Martinec Z (1993) Effect of lateral density variations of topographical masses in improving geoid model accuracy over Canada. Contract Report for Geodetic Survey of Canada, Ottawa

    Google Scholar 

  • Martinec Z (1998) Boundary value problems for gravimetric determination of a precise geoid (Lecture Notes in Earth Sciences). Springer, New York

    Google Scholar 

  • Martinec Z, Vaníček P (1994a) Direct topographical effect of Helmert’s condensation for a spherical approximation of the geoid. Manuscripta Geodaetica 19:257–268

    Google Scholar 

  • Martinec Z, Vaníček P (1994b) The indirect effect of topography in the Stokes-Helmert technique for a spherical approximation of the geoid. Manuscripta Geodaetica 19:213–219

    Google Scholar 

  • Martinec Z, Vaníček P, Mainville A, Véronneau M (1995) The effect of lake water on geoidal height. Manuscripta Geodaetica 20:199–203

    Google Scholar 

  • Mollweide KB (1813) Auflösung einiger die Anziehing von Linien Flächen und Köpern betreffenden Aufgaben unter denen auch die in der Monatl Corresp Bd XXIV. S, 522. vorgelegte sich findet. Zach’s Monatliche Correspondenz zur Beförderung der Erd- und Himmelskunde, XXVII, pp 26–38

    Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geod 74:552–560. doi:10.1007/s001900000116

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2002) Corrections to “The gravi- tational potential and its derivatives for the prism”. J Geod 76:475. doi:10.1007/s00190-002-0264-7

    Article  Google Scholar 

  • Pagiatakis, S., D. Fraser, K. McEwen, A. Goodacre and M. Véronneau (1999). Topographic mass density and gravimetric geoid modelling. Bollettino di Geofisica

    Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three dimensional interpretation. Pure Appl Geophys 112:553–561

    Article  Google Scholar 

  • Pohánka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46:391–404

    Article  Google Scholar 

  • Seitz K, Heck B (2001) Tesseroids for the calculation of topographic reductions. IAG 2001 Scientific Assembly, Budapest, Hungary, September 2–7

    Google Scholar 

  • Tzaivos IN, Featherstone WE (2001) First results of using digital density data in gravimetric geoid computation in Australia. In: Sideris MG (ed) Gravity, geoid and geodynamics. Springer, Berlin, pp 335–340

    Google Scholar 

  • Vaníček P, Kleusberg A (1987) The Canadian geoid – stokesian approach. Manuscripta Geodaetica 12:86–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kingdon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kingdon, R., Vaníček, P., Santos, M. (2012). Effects of Hypothetical Complex Mass-Density Distributions on Geoidal Height. In: Kenyon, S., Pacino, M., Marti, U. (eds) Geodesy for Planet Earth. International Association of Geodesy Symposia, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20338-1_51

Download citation

Publish with us

Policies and ethics