Skip to main content

Disease Gene Prioritization Based on Topological Similarity in Protein-Protein Interaction Networks

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

In recent years, many algorithms have been developed to narrow down the set of candidate disease genes implicated by genome wide association studies (GWAS), using knowledge on protein-protein interactions (PPIs). All of these algorithms are based on a common principle; functional association between proteins is correlated with their connectivity/proximity in the PPI network. However, recent research also reveals that networks are organized into recurrent network schemes that underlie the mechanisms of cooperation among proteins with different function, as well as the crosstalk between different cellular processes. In this paper, we hypothesize that proteins that are associated with similar diseases may exhibit patterns of “topological similarity” in PPI networks. Motivated by these observations, we introduce the notion of “topological profile”, which represents the location of a protein in the network with respect to other proteins. Based on this notion, we develop a novel measure to assess the topological similarity of proteins in a PPI network. We then use this measure to develop algorithms that prioritize candidate disease genes based on the topological similarity of their products and the products of known disease genes. Systematic experimental studies using an integrated human PPI network and the Online Mendelian Inheritance (OMIM) database show that the proposed algorithm, Vavien, clearly outperforms state-of-the-art network based prioritization algorithms. Vavien is available as a web service at http://www.diseasegenes.org .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunner, H.G., van Driel, M.A.: From syndrome families to functional genomics. Nat. Rev. Genet. 5(7), 545–551 (2004)

    Article  Google Scholar 

  2. Glazier, A.M., Nadeau, J.H., Aitman, T.J.: Finding Genes That Underlie Complex Traits. Science 298(5602), 2345–2349 (2002)

    Article  Google Scholar 

  3. Lage, K., Karlberg, E., Storling, Z., Olason, P., Pedersen, A., Rigina, O., Hinsby, A., Tumer, Z., Pociot, F., Tommerup, N., Moreau, Y., Brunak, S.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat. Bio 25(3), 309–316 (2007)

    Article  Google Scholar 

  4. Nica, A.C., Dermitzakis, E.T.: Using gene expression to investigate the genetic basis of complex disorders. Human Molecular Genetics 17(R2), ddn134– ddn285 (2008)

    Article  Google Scholar 

  5. Adie, E., Adams, R., Evans, K., Porteous, D., Pickard, B.: SUSPECTS: enabling fast and effective prioritization of positional candidates. Bioinformatics 22(6), 773–774 (2006)

    Article  Google Scholar 

  6. Chen, J., Bardes, E.E., Aronow, B.J., Jegga, A.G.: Toppgene suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Research 37(Web Server issue), gkp427+ (2009)

    Google Scholar 

  7. Turner, F., Clutterbuck, D., Semple, C.: Pocus: mining genomic sequence annotation to predict disease genes. Genome Biology 4(11), R75 (2003)

    Article  Google Scholar 

  8. Ewing, R.M., Chu, P., Elisma, F., Li, H., Figeys, D.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Molecular Systems Biology 3 (2007)

    Google Scholar 

  9. Navlakha, S., Kingsford, C.: The power of protein interaction networks for associating genes with diseases. Bioinformatics 26(8), 1057–1063 (2010)

    Article  Google Scholar 

  10. Franke, L., Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78(6), 1011–1025 (2006)

    Article  Google Scholar 

  11. Ideker, T., Sharan, R.: Protein networks in disease. Genome Research 18(4), 644–652 (2008)

    Article  Google Scholar 

  12. Karni, S., Soreq, H., Sharan, R.: A network-based method for predicting disease-causing genes. Journal of Computational Biology 16(2), 181–189 (2009)

    Article  Google Scholar 

  13. Oti, M., Snel, B., Huynen, M.A., Brunner, H.G.: Predicting disease genes using protein-protein interactions. J. Med. Genet., jmg.2006.041376 (2006)

    Google Scholar 

  14. Chen, J., Aronow, B., Jegga, A.: Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10(1), 73 (2009)

    Article  Google Scholar 

  15. Köhler, S., Bauer, S., Horn, D., Robinson, P.N.: Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 82(4), 949–958 (2008)

    Article  Google Scholar 

  16. Vanunu, O., Magger, O., Ruppin, E., Shlomi, T., Sharan, R.: Associating genes and protein complexes with disease via network propagation. PLoS Comp. Bio. 6(1) (January 2010)

    Google Scholar 

  17. Zhang, L., Hu, K., Tang, Y.: Predicting disease-related genes by topological similarity in human protein-protein interaction network. Central European Journal of Physics 8, 672–682 (2010), 10.2478/s11534-009-0114-9

    Google Scholar 

  18. Wu, X., Jiang, R., Zhang, M.Q., Li, S.: Network-based global inference of human disease genes. Molecular Systems Biology 4 (May 2008)

    Google Scholar 

  19. Missiuro, P.V.V., Liu, K., Zou, L., Ross, B.C., Zhao, G., Liu, J.S., Ge, H.: Information flow analysis of interactome networks. PLoS Computational Biology 5(4), e1000350+ (2009)

    Article  Google Scholar 

  20. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabási, A.L.: The human disease network. PNAS 104(21), 8685–8690 (2007)

    Article  Google Scholar 

  21. Rhodes, D.R., Chinnaiyan, A.M.: Integrative analysis of the cancer transcriptome. Nat. Genet. 37 Suppl. (June 2005)

    Google Scholar 

  22. Pandey, J., Koyutürk, M., Grama, A.: Functional characterization and topological modularity of molecular interaction networks. BMC Bioinformatics 11(Suppl. 1), S35 (2010)

    Article  Google Scholar 

  23. Bebek, G., Patel, V., Chance, M.R.: Petals: Proteomic evaluation and topological analysis of a mutated locus signaling. BMC Bioinformatics 11, 596 (2010)

    Article  Google Scholar 

  24. Pandey, J., Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Functional annotation of regulatory pathways. Bioinformatics Suppl. on ISMB/ECCB 2007 23(13), i377–i386 (2007)

    Google Scholar 

  25. Bebek, G., Yang, J.: Pathfinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics 8, 335 (2007)

    Article  Google Scholar 

  26. Banks, E., Nabieva, E., Peterson, R., Singh, M.: Netgrep: fast network schema searches in interactomes. Genome Biology 9(9) (2008)

    Google Scholar 

  27. Kirac, M., Özsoyoģlu, G.: Protein function prediction based on patterns in biological networks. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 197–213. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  28. Sjöblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., et al.: The consensus coding sequences of human breast and colorectal cancers. Science 314(5797), 268–274 (2006)

    Article  Google Scholar 

  29. Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J.: The genomic landscapes of human breast and colorectal cancers. Science 318(5853), 1108–1113 (2007)

    Article  Google Scholar 

  30. Marsh, V., Winton, D.J., Williams, G.T., Dubois, N., Trumpp, A., Sansom, O.J., Clarke, A.R.: Epithelial pten is dispensable for intestinal homeostasis but suppresses adenoma development and progression after apc mutation. Nat. Genet. 40(12), 1436–1444 (2008)

    Article  Google Scholar 

  31. Halberg, R.B., Chen, X., Amos-Landgraf, J.M., White, A., Rasmussen, K., Clipson, L., et al.: The pleiotropic phenotype of apc mutations in the mouse: allele specificity and effects of the genetic background. Genetics 180(1), 601–609 (2008)

    Article  Google Scholar 

  32. Patel, V.N., Bebek, G., Mariadason, J.M., Wang, D., Augenlicht, L.H., Chance, M.R.: Prediction and testing of biological networks underlying intestinal cancer. PLoS One 5(9) (2010)

    Google Scholar 

  33. Erten, S., Koyutürk, M.: Role of centrality in network-based prioritization of disease genes. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 13–25. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining analysis of the human phenome. EJHG 14(5), 535–542 (2006)

    Article  Google Scholar 

  35. Stumpf, M.P.H., Thorne, T., de Silva, E., et al.: Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA 105(19), 6959–6964 (2008)

    Article  Google Scholar 

  36. Sharan, R., Suthram, S., et al.: Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  37. Suthram, S., Shlomi, T., Ruppin, E., Sharan, R., Ideker, T.: A direct comparison of protein interaction confidence assignment schemes. BMC Bioinformatics 7, 360+ (2006)

    Article  Google Scholar 

  38. Mewes, H.W., Heumann, K., Kaps, et al.: Mips: a database for genomes and protein sequences. Nuc. Ac. Res. 27(1), 44–48 (1999)

    Article  Google Scholar 

  39. Smialowski, P., Pagel, P., Wong, P., Brauner, B., Dunger, I., Fobo, G., Frishman, G., Montrone, C., Rattei, T., Frishman, D., Ruepp, A.: The negatome database: a reference set of non-interacting protein pairs. Nucleic Acids Res. 38(Database issue), D540–D544 (2010)

    Article  Google Scholar 

  40. Barrett, T., Troup, D.B., et al.: Ncbi geo: archive for high-throughput functional genomic data. Nucleic Acids Res. 37(Database issue), 885–890 (2009)

    Article  Google Scholar 

  41. Sprenger, J., Lynn Fink, J., Karunaratne, S., Hanson, K., Hamilton, N.A., Teasdale, R.D.: Locate: a mammalian protein subcellular localization database. Nucleic Acids Res. 36(Database issue), D230–D233 (2008)

    Google Scholar 

  42. Goldberg, D.S., Roth, F.P.: Assessing experimentally derived interactions in a small world. Proc. Natl. Acad. Sci. USA 100(8), 4372–4376 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: STOC, pp. 563–568 (2008)

    Google Scholar 

  44. Tetali, P.: Random walks and the effective resistance of networks. Journal of Theoretical Probability 4(1), 101–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lovász, L.: Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty 2, 353–398 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Tong, H., Faloutsos, C., Pan, J.Y.: Random walk with restart: fast solutions and applications. Knowledge and Information Systems 14(3), 327–346 (2008)

    Article  MATH  Google Scholar 

  47. Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 10(1), 283 (2009)

    Article  Google Scholar 

  48. Tong, H., Faloutsos, C.: Center-piece subgraphs: problem definition and fast solutions. In: KDD 2006: Proceedings of the 12th ACM SIGKDD, pp. 404–413. ACM, NY (2006)

    Google Scholar 

  49. Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T.: Entrez Gene: gene-centered information at NCBI. Nucl. Acids Res. 35(suppl-1), D26–D31 (2007)

    Article  Google Scholar 

  50. Erten, S., Bebek, G., Ewing, R.M., Koyutürk, M.: Dada - degree-aware disease gene prioritization. BioData Mining (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Erten, S., Bebek, G., Koyutürk, M. (2011). Disease Gene Prioritization Based on Topological Similarity in Protein-Protein Interaction Networks. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics