Skip to main content

IsoLasso: A LASSO Regression Approach to RNA-Seq Based Transcriptome Assembly

(Extended Abstract)

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

The new second generation sequencing technology revolutionizes many biology related research fields, and posts various computational biology challenges. One of them is transcriptome assembly based on RNA-Seq data, which aims at reconstructing all full-length mRNA transcripts simultaneously from millions of short reads. In this paper, we consider three objectives in transcriptome assembly: the maximization of prediction accuracy, minimization of interpretation, and maximization of completeness. The first objective, the maximization of prediction accuracy, requires that the estimated expression levels based on assembled transcripts should be as close as possible to the observed ones for every expressed region of the genome. The minimization of interpretation follows the parsimony principle to seek as few transcripts in the prediction as possible. The third objective, the maximization of completeness, requires that the maximum number of mapped reads (or “expressed segments” in gene models) be explained by (i.e., contained in) the predicted transcripts in the solution. Based on the above three objectives, we present IsoLasso, a new RNA-Seq based transcriptome assembly tool. IsoLasso is based on the well-known LASSO algorithm, a multivariate regression method designated to seek a balance between the maximization of prediction accuracy and the minimization of interpretation. By including some additional constraints in the quadratic program involved in LASSO, IsoLasso is able to make the set of assembled transcripts as complete as possible. Experiments on simulated and real RNA-Seq datasets show that IsoLasso achieves higher sensitivity and precision simultaneously than the state-of-art transcript assembly tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wheeler, D.A., et al.: The complete genome of an individual by massively parallel dna sequencing. Nature 452, 872–876 (2008)

    Article  Google Scholar 

  2. Mortazavi, A., et al.: Mapping and quantifying mammalian transcriptomes by rna-seq. Nature Methods 5, 621–628 (2008)

    Article  Google Scholar 

  3. Holt, K.E., et al.: High-throughput sequencing provides insights into genome variation and evolution in salmonella typhi. Nature Genetics 40, 987–993 (2008)

    Article  Google Scholar 

  4. Wilhelm, B.T., et al.: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453, 1239–1243 (2008)

    Article  Google Scholar 

  5. Lister, R., et al.: Highly integrated Single-Base resolution maps of the epigenome in arabidopsis. Cell 133(3), 523–536 (2008)

    Article  Google Scholar 

  6. Morin, R., et al.: Profiling the HeLa s3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques 45, 81–94 (2008), PMID: 18611170

    Article  Google Scholar 

  7. Marioni, J.C., et al.: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research 18(9), 1509–1517 (2008)

    Article  Google Scholar 

  8. Cloonan, N., et al.: Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Meth. 5, 613–619 (2008)

    Article  Google Scholar 

  9. Nagalakshmi, U., et al.: The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320, 1344–1349 (2008)

    Article  Google Scholar 

  10. Haas, B.J., Zody, M.C.: Advancing RNA-Seq analysis. Nat. Biotech. 28, 421–423 (2010)

    Article  Google Scholar 

  11. Morozova, O., et al.: Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics 10(1), 135–151 (2009), PMID: 19715439

    Article  MathSciNet  Google Scholar 

  12. Wall, P.K., et al.: Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10(1), 347 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wang, Z., et al.: RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009)

    Article  Google Scholar 

  14. Birol, I., et al.: De novo transcriptome assembly with abyss. Bioinformatics 25, 2872–2877 (2009)

    Article  Google Scholar 

  15. Yassour, M., et al.: Ab initio construction of a eukaryotic transcriptome by massively parallel mrna sequencing. Proceedings of the National Academy of Sciences of the United States of America 106, 3264–3269 (2009)

    Article  Google Scholar 

  16. Trapnell, C., et al.: Transcript assembly and quantification by rna-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology 28, 511–515 (2010)

    Article  Google Scholar 

  17. Guttman, M., et al.: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. Nature Biotechnology 28, 503–510 (2010)

    Article  Google Scholar 

  18. Feng, J., et al.: Inference of isoforms from short sequence reads. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 138–157. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Trapnell, C., et al.: Tophat: discovering splice junctions with rna-seq. Bioinformatics 25, 1105–1111 (2009)

    Article  Google Scholar 

  20. Au, K.F., et al.: Detection of splice junctions from paired-end rna-seq data by splicemap. Nucl. Acids Res., gkq211+ (April 2010)

    Google Scholar 

  21. Jiang, H., Wong, W.H.: Statistical inferences for isoform expression in rna-seq. Bioinformatics 25, 1026–1032 (2009)

    Article  Google Scholar 

  22. Hastie, T., et al.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, ch. 3, p. 57. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  23. Hocking, R.R., Leslie, R.N.: Selection of the best subset in regression analysis. Technometrics 9(4), 531–540 (1967)

    Article  MathSciNet  Google Scholar 

  24. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Wu, T.T., et al.: Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25, 714–721 (2009)

    Article  Google Scholar 

  26. Kim, S., et al.: A multivariate regression approach to association analysis of a quantitative trait network. Bioinformatics 25, i204–i212 (2009)

    Article  Google Scholar 

  27. Gustafsson, M., et al.: Constructing and analyzing a large-scale gene-to-gene regulatory network-lasso-constrained inference and biological validation. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2(3), 254–261 (2005)

    Article  MathSciNet  Google Scholar 

  28. Ma, S., et al.: Supervised group lasso with applications to microarray data analysis. BMC Bioinformatics 8, 60+ (2007)

    Article  Google Scholar 

  29. Paaniuc, B., et al.: Accurate estimation of expression levels of homologous genes in RNA-seq experiments. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol. 6044, pp. 397–409. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Li, J., et al.: Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biology 11(5), R50+ (2010)

    Article  Google Scholar 

  31. Richard, H., et al.: Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Research 38, e112 (2010)

    Article  Google Scholar 

  32. Srivastava, S., Chen, L.: A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Research 38, e170 (2010)

    Article  Google Scholar 

  33. Lee, S., et al.: Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Research (November 2010)

    Google Scholar 

  34. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  35. Efron, B., et al.: Least angle regression. Annals of Statistics 32, 407–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 659–677 (2007)

    Article  MathSciNet  Google Scholar 

  38. Optimization Toolbox User’s Guide. The Mathworks, Inc., Natrik (2004)

    Google Scholar 

  39. Sammeth, M., et al.: The flux simulator (2010), http://flux.sammeth.net

  40. The ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Feng, J., Jiang, T. (2011). IsoLasso: A LASSO Regression Approach to RNA-Seq Based Transcriptome Assembly. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics