Skip to main content

Bacterial Community Reconstruction Using Compressed Sensing

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6577))

Abstract

Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples.

Availability: supplementary information, data and MATLAB code are available at: http://www.broadinstitute.org/~orzuk/publications/BCS/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amann, R., Ludwig, W., Schleifer, K.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews 59(1), 143–169 (1995)

    Google Scholar 

  2. Armougom, F., Raoult, D.: Use of pyrosequencing and DNA barcodes to monitor variations in firmicutes and bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 9(1), 576 (2008)

    Article  Google Scholar 

  3. Bobin, J., Starck, J., Ottensamer, R.: Compressed sensing in astronomy. Journal of Selected Topics in Signal Processing 2, 718–726 (2008)

    Article  Google Scholar 

  4. Brodie, E., DeSantis, T., Parker, J., Zubietta, I., Piceno, Y.M., Andersen, G.L.: Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences 104(1), 299–304 (2007)

    Article  Google Scholar 

  5. Candes, E.: Compressive sampling. In: Int. Congress of Mathematics, Madrid, Spain, pp. 1433–1452 (2006)

    Google Scholar 

  6. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Arxiv preprint math/0503066 (2005)

    Google Scholar 

  7. Candes, E., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E., Tao, T.: Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candes, E., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics 35(6), 2313–2351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, W., Sheikh, M., Milenkovic, O., Baraniuk, R.: Compressive sensing dna microarrays. EURASIP Journal on Bioinformatics and Systems Biology (2009), doi:10.1155/2009/162824

    Google Scholar 

  11. DeSantis, T., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72(7), 5069 (2006)

    Article  Google Scholar 

  12. Dethlefsen, L., Huse, S., Sogin, M., Relman, D.: The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biology 6(11), e280 (2008)

    Article  Google Scholar 

  13. Dewhirst, F., Izard, J., Paster, B., et al.: The human oral microbiome database (2008)

    Google Scholar 

  14. Donoho, D.: Compressed sensing. IEEE Transaction on Information Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho, D.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duarte, M., Davenport, M., Takhar, D., Laska, J., Sun, T., Kelly, K., Baraniuk, R.: Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine 25(2), 83–91 (2008)

    Article  Google Scholar 

  17. Eckburg, P., Bik, E., Bernstein, C., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S., Nelson, K., Relman, D.: Diversity of the human intestinal microbial flora. Science 308(5728), 1635–1638 (2005)

    Article  Google Scholar 

  18. Erlich, Y., Gordon, A., Brand, M., Hannon, G., Mitra, P.: Compressed Genotyping. IEEE Transactions on Information Theory 56(2), 706–723 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing 1(4), 586–597 (2007)

    Article  Google Scholar 

  20. Gao, Z., Tseng, C., Pei, Z., Blaser, M.: Molecular analysis of human forearm superficial skin bacterial biota. Proceedings of the National Academy of Sciences 104(8), 2927 (2007)

    Article  Google Scholar 

  21. Gentry, T., Wickham, G., Schadt, C., He, Z., Zhou, J.: Microarray applications in microbial ecology research. Microbial Ecology 52(2), 159–175 (2006)

    Article  Google Scholar 

  22. Guarner, F., Malagelada, J.: Gut flora in health and disease. Lancet 361(9356), 512–519 (2003)

    Article  Google Scholar 

  23. Hamady, M., Knight, R.: Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Research 19(7), 1141–1152 (2009), PMID: 19383763

    Article  Google Scholar 

  24. Hamady, M., Walker, J., Harris, J., Gold, N., Knight, R.: Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods 5(3), 235–237 (2008)

    Article  Google Scholar 

  25. Hugenholtz, P.: Exploring prokaryotic diversity in the genomic era. Genome Biology 3(2), reviews0003.1–reviews0003.8 (2002)

    Google Scholar 

  26. Huse, S., Dethlefsen, L., Huber, J., Welch, D., Relman, D., Sogin, M.: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics 4(11), e1000255 (2008)

    Article  Google Scholar 

  27. Kainkaryam, R., Woolf, P.: Pooling in high-throughput drug screening. Current Opinion in Drug Discovery & Development 12(3), 339 (2009)

    Google Scholar 

  28. Keller, M., Zengler, K.: Tapping into microbial diversity. Nature Reviews Microbiology 2(2), 141–150 (2004)

    Article  Google Scholar 

  29. Kommedal, O., Karlsen, B., Sabo, O.: Analysis of mixed sequencing chromatograms and its application in direct 16S rDNA sequencing of poly-microbial samples. Journal of Clinical Microbiology (2008)

    Google Scholar 

  30. Lin, T., Herrmann, F.: Compressed wavefield extrapolation. Geophysics 72 (2007)

    Google Scholar 

  31. Lipshutz, R., Taverner, F., Hennessy, K., Hartzell, G., Davis, R.: DNA sequence confidence estimation. Genomics 19(3), 417–424 (1994)

    Article  Google Scholar 

  32. Lustig, M., Donoho, D., Pauly, J.: Sparse mri: The application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine 58, 1182–1195 (2007)

    Article  Google Scholar 

  33. Mager, D., Haffajee, A., Devlin, P., Norris, C., Posner, M., Goodson, J.: The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J. Transl. Med. 3(1), 27 (2005)

    Article  Google Scholar 

  34. Maiden, M., Bygraves, J., Feil, E., Morelli, G., Russell, J., Urwin, R., Zhang, Q., Zhou, J., Zurth, K., Caugant, D., et al.: Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proceedings of the National Academy of Sciences 95(6), 3140–3145 (1998)

    Article  Google Scholar 

  35. Medini, D., Serruto, D., Parkhill, J., Relman, D., Donati, C., Moxon, R., Falkow, S., Rappuoli, R.: Microbiology in the post-genomic era. Nat. Rev. Micro. 6(6), 419–430 (2008)

    Google Scholar 

  36. Paster, B., Boches, S., Galvin, J., Ericson, R., Lau, C., Levanos, V., Sahasrabudhe, A., Dewhirst, F.: Bacterial diversity in human subgingival plaque. J. of Bacteriology 183(12), 3770–3783 (2001)

    Article  Google Scholar 

  37. Savage, D.: Microbial ecology of the gastrointestinal tract. Annual Reviews of Microbiology 31, 107–133 (1977)

    Article  Google Scholar 

  38. Sears, C.: A dynamic partnership: Celebrating our gut flora. Anaerobe 11(5), 247–251 (2005)

    Article  Google Scholar 

  39. Shental, N., Amir, A., Zuk, O.: Identification of rare alleles and their carriers using compressed se(que)nsing. Nucleic Acid Research 38(19), e179 (2010)

    Article  Google Scholar 

  40. Singh, B., Millard, P., Whiteley, A., Murrell, J.: Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 12(8), 386–393 (2004)

    Article  Google Scholar 

  41. Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Transactions on Information Theory 52(3), 1030–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K.H., Ludwig, W., Glckner, F.O., Rossell-Mra, R.: The all-species living tree project: A 16s rrna-based phylogenetic tree of all sequenced type strains. Systematic and Applied Microbiology 31(4), 241–250 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amir, A., Zuk, O. (2011). Bacterial Community Reconstruction Using Compressed Sensing. In: Bafna, V., Sahinalp, S.C. (eds) Research in Computational Molecular Biology. RECOMB 2011. Lecture Notes in Computer Science(), vol 6577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20036-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20036-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20035-9

  • Online ISBN: 978-3-642-20036-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics