Skip to main content

Molecular Phylogenetics of Restriction Endonucleases

  • Chapter
Restriction Endonucleases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 14))

Abstract

The phenomenon of restriction and modification (R-M) was first discovered in the early 1950s. It was observed that certain strains of bacteria inhibited (‘restricted’) the growth of bacteriophages previously propagated on a different strain. In the early 1960s, it was found that the restriction is due to the enzymatic cleavage of the phage DNA by sequence -specific endonucleases (REases), which are sensitive to covalent modification of bases in the target sequence. Some of the REases produced discrete DNAfragments upon cleavage. This property proved very useful for analyzing and rearranging DNA, which soon prompted the rapid development of genetic engineering techniques as well as the search for more REaseswith novel recognition sequences (early review: Arber and Linn 1969). It was in the mid-1970s when cloning of R-M enzymes themselves began (review by Lunnen et al. 1988). It was found that most of restriction enzymes are genetically linked with modification enzymes of cognate specificity, forming R-M systems, but a few solitary enzymes were also characterized (reviews: Wilson 1991; Wilson and Murray 199I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aggarwal AK (1995) Structure and function of restriction endonucleases. Curr Opin Struct Biol 5:11–19

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Walker DR, Koonin EV (1999) Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223–1242

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Makarova KS, Koonin EV (2000) Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417–3432

    Article  PubMed  CAS  Google Scholar 

  • Arber W (1979) Promotion and limitation of genetic exchange. Science 205:361–365

    Article  PubMed  CAS  Google Scholar 

  • Arber W (2000) Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7

    Article  PubMed  CAS  Google Scholar 

  • Arber W, Linn S (1969) DNAmodification and restriction. Annu Rev Biochem 38:467500

    Article  Google Scholar 

  • Ban C, Yang W (1998) Structural basis for MutH activation in E. coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J 17:1526–1534

    Article  PubMed  CAS  Google Scholar 

  • Bickle TA, Kruger DH (1993) Biology of DNArestriction. Microbiol Rev 57:434–450

    PubMed  CAS  Google Scholar 

  • Bond CS, Kvaratskhelia M, Richard D, White MF, Hunter WN (2001) Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfatar icus. Proc Natl Acad Sci USA 98:5509–5514

    Article  PubMed  CAS  Google Scholar 

  • Bozic D, Grazulis S, Siksnys V, Huber R (1996) Crystal structure of Citrobacter freundii restriction endonuclease CfrlOI at 2.15 Åresolution. J Mol Bioi 255:176–186

    Article  CAS  Google Scholar 

  • Bujnicki JM (2000) Phylogeny of the restriction endonuclease-like superfamily inferred from comparison of protein structures. J Mol Evol 50:39–44

    PubMed  CAS  Google Scholar 

  • Bujnicki JM (2001a) A model of structure and action of Sau3AI restriction endonuclease that comprises two MutH-like endonuclease domains within a single polypeptide. Acta Microbiol Pol 50:219–231

    PubMed  CAS  Google Scholar 

  • Bujnicki JM (2001b) Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. Acta Biochim Pol 48:1–33

    Google Scholar 

  • Bujnicki JM (2003) Crystallographic and bioinformatics studies on restriction endonucleases: inference of evolutionary relationships in the ‘midnight zone’ of homology. Curr Prot Pept Sci 4 (in press)

    Google Scholar 

  • Bujnicki JM, Rychlewski L (2001a) Grouping together highly diverged PD-(D/E)XK nucleases and identification of novel superfamily members using structure-guided alignment of sequence profiles. J Mol Microbiol Biotechnol 3:69–72

    PubMed  CAS  Google Scholar 

  • Bujnicki JM, Rychlewski L (2001b) Identification of a PD-(D/E)XK-like domain with a novel configuration of the endonuclease active site in the methyl-directed restriction enzyme Mrr and its homologs. Gene 267:183–191

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Rychlewski L (2001c) The herpesvirus alkaline exonuclease belongs to the restriction endonuclease PD-(D/E)XK superfamily: insight from molecular modeling and phylogenetic analysis. Virus Genes 22:219–230

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Rychlewski L (2001d) Unusual evolutionary history of the tRNA splicing endonuclease EndA: relationship to the LAGLIDADG and PD-(D/E)XK deoxyribonucleases. Protein Sci 10:656–660

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Radlinska M, Rychlewski L (2000) Atomic model of the 5-methylcytosinespecific restriction enzyme McrA reveals an atypical zinc-finger and structural similarity to ββαMe endonucleases. Mol Microbiol 37:1280–1281

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Radlinska M, Rychlewski L (2001a) Polyphyletic evolution of Type II restriction enzymes revisited: two independent sources of second-hand folds revealed. Trends Biochem Sci 26:9–11

    Article  PubMed  CAS  Google Scholar 

  • Bujnicki JM, Rotkiewicz P, Kolinski A, Rychlewski L (2001b) Three-dimensional modeling of the I-TevI homing endonuclease catalytic domain, a GIY-YIG member, using NMR restraints and Monte Carlo dynamics. Protein Eng 14:717–21

    Article  PubMed  CAS  Google Scholar 

  • Carlson K, Kosturko LD (1998) Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease? Mol Microbiol 27:671–676

    Article  PubMed  CAS  Google Scholar 

  • Carugo O, Pongor S (2002) Protein fold similarity estimated by a probabilistic approach based on Cα-Cα distance comparison. J Mol Biol 315:887–898

    Article  PubMed  CAS  Google Scholar 

  • Chang HW, Julin DA (2001) Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J Biol Chern 276:46004–46010

    Article  CAS  Google Scholar 

  • Cheng X, Balendiran K, Schildkraut I, Anderson JE (1994) Structure of PvuII endonuclease with cognate DNA. EMBO J 13:3927–3935

    PubMed  CAS  Google Scholar 

  • Chinen A, Uchiyama I, Kobayashi I (2000) Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms. Gene 259:109–121

    Article  PubMed  CAS  Google Scholar 

  • Daiyasu H, Komori K, Sakae S, Ishino Y, Toh H (2000) Hjc resolvase is a distantly related member of the Type II restriction endonuclease family. Nucleic Acids Res 28:4540–4543

    Article  PubMed  CAS  Google Scholar 

  • Davies GP, Kemp P, Molineux IJ, Murray NE (1999a) The DNA translocation and ATPase activities of restriction-deficient mutants of EcoKI. J Mol Biol 292:787–796

    Article  PubMed  CAS  Google Scholar 

  • Davies GP, Martin I, Sturrock SS, Cronshaw A, Murray NE, Dryden DT (1999b) On the structure and operation of Type I DNA restriction enzymes. J Mol Biol 290:565–579

    Article  PubMed  CAS  Google Scholar 

  • Deibert M, Grazulis S, Janulaitis A, Siksnys V, Huber R (1999) Crystal structure of MunI restriction endonuclease in complex with cognate DNA at 1.7 A resolution. EMBO J 18:5805–5816

    Article  PubMed  CAS  Google Scholar 

  • Deibert M, Grazulis S, Sasnauskas G, Siksnys V, Huber R (2000) Structure of the tetrameric restriction endonuclease NgoMIV in complex with cleaved DNA. Nat Struct Biol 7:792–799

    Article  PubMed  CAS  Google Scholar 

  • Finnegan DJ (1997) Transposable elements: how non-LTR retrotransposons do it. Curr Biol 7:R245–R248

    Article  PubMed  CAS  Google Scholar 

  • Friedhoff P, Lurz R, Luder G, Pingoud A (2001) Sau3AI. a monomeric Type II restriction endonuclease that dimerizes on the DNA and thereby induces dna loops. J Biol Chern 276:23581–23588

    Article  CAS  Google Scholar 

  • Fuxreiter M, Simon I (2002) Protein stability indicates divergent evolution of PD-(D/E) XK Type II restriction endonucleases. Protein Sci 11:1978–1983

    Article  PubMed  CAS  Google Scholar 

  • Gimble FS (2000) Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol Lett 185:99–107

    Article  PubMed  CAS  Google Scholar 

  • Grazulis S, Deibert M, Rimseliene R, Skirgaila R, Sasnauskas G, Lagunavicius A, Repin V, Urbanke C, Huber R, Siksnys V (2002) Crystal structure of the Bse634I restriction endonuclease: comparison of two enzymes recognizing the same DNA sequence. Nucleic Acids Res 30:876–885

    Article  PubMed  CAS  Google Scholar 

  • Grishin NV (1997) Estimation of evolutionary distances from protein spatial structures. J Mol EvoI 45:359–369

    Article  CAS  Google Scholar 

  • Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134:167–185

    Article  PubMed  CAS  Google Scholar 

  • Hadden JM, Convery MA, Declais AC, Lilley DM, Phillips SE (2001) Crystal structure of the Holliday junction resolving enzyme T7 endonuclease I. Nat Struct Biol 8:62–67

    Article  PubMed  CAS  Google Scholar 

  • Hasson MS, Schlichting I, Moulai J, Taylor K, Barrett W, Kenyon GL, Babbitt PC, Gerlt JA, Petsko GA, Ringe D (1998) Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase. Proc Natl Acad Sci USA 95:10396–10401

    Article  PubMed  CAS  Google Scholar 

  • Heitman J (1993) On the origins, structures and functions of restriction-modification enzymes. Genet Eng N Y 15:57–108

    PubMed  CAS  Google Scholar 

  • Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F (2000) Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 5:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Horton NC, Dorner LF, Perona JJ (2002) Sequence selectivity and degeneracy of a restriction endonuclease mediated by DNAintercalation. Nat Struct Biol 9:42–47

    Article  PubMed  CAS  Google Scholar 

  • Huai Q, Colandene JD, Chen Y, Luo F, Zhao Y, Topal MD, Ke H (2000) Crystal structure of NaeI-an evolutionary bridge between DNAendonuclease and topoisomerase. EMBO J 19:3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Huai Q, Colandene JD, Topal MD, Ke H (2001) Structure of NaeI-DNA complex reveals dual-mode DNA recognition and complete dimer rearrangement. Nat Struct Biol 8:665–669

    Article  PubMed  CAS  Google Scholar 

  • Ichiyanagi K, Ishino Y, Ariyoshi M, Komori K, Morikawa K (2000) Crystal structure of an archaeal intein-encoded homing endonuclease PI-PfuI. J Mol Bioi 300:889–901

    Article  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2002) Extensive domain shuffling in transcription regulators of DNAviruses and implications for the origin of fungal APSES transcription factors. Genome BioI 3:RESEARCHOOI2

    Google Scholar 

  • Janosi L, Yonemitsu H, Hong H, Kaji A (1994) Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRtslI) modulated by glucosylation of DNA. J Mol Bioi 242:45–61

    Article  CAS  Google Scholar 

  • Janscak P, Sandmeier U, Bickle TA (1999) Single amino acid substitutions in the HsdR subunit of the Type IB restriction enzyme EcoAI uncouple the DNA translocation and DNAcleavage activities of the enzyme. Nucleic Acids Res 27:2638–2643

    Article  PubMed  CAS  Google Scholar 

  • Janscak P, Sandmeier U, Szczelkun MD, Bickle TA (2001) Subunit assembly and mode of DNA cleavage of the Type III restriction endonucleases EcoPlI and EcoP151. J Mol Bioi 306:417–431

    Article  CAS  Google Scholar 

  • Jeltsch A, Kroger M, Pingoud A (1995) Evidence for an evolutionary relationship among type-II restriction endonucleases. Gene 160:7–16

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch A, Pingoud A (1996) Horizontal gene transfer contributes to the wide distribution and evolution of Type II rest riction-modification systems. J Mol Evol 42:91–96

    Article  PubMed  CAS  Google Scholar 

  • Johnson MS, Sutcliffe MJ, Blundell TL (1990) Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30:43–59

    Article  PubMed  CAS  Google Scholar 

  • Jurica MS, Stoddard BL (1999) Homing endonucleases: structure, function and evolution. Cell Mol Life Sci 55:1304–1326

    Article  PubMed  CAS  Google Scholar 

  • Jurica MS, Monnat RJJ, Stoddard BL (1998) DNArecognition and cleavage by the LAGLIDADGhoming endonuclease I-Crel. Mol Cell 2:469–476

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Grable JC, Love R, Green PJ, Rosenberg JM (1990) Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. Science 249:1307–1309

    Article  PubMed  CAS  Google Scholar 

  • Kinch LN, Grishin NV (2002) Evolution of protein structures and functions. Curr Opin Struct Biol 12:400–408

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756

    Article  PubMed  CAS  Google Scholar 

  • Kong H, Lin LF, Porter N, Stickel S, Byrd D, Posfai J, Roberts RJ (2000) Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res 28:3216–3223

    Article  PubMed  CAS  Google Scholar 

  • Kostrewa D, Winkler FK (1995) Mg2+ binding to the active site of EcoRVendonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Åresolution. Biochemistry 34:683–696

    Article  PubMed  CAS  Google Scholar 

  • Kovall RA, Matthews BW (1998) Structural, functional, and evolutionary relationships between lambda-exonuclease and the Type II restriction endonucleases. Proc Natl Acad Sci USA 95:7893–7897

    Article  PubMed  CAS  Google Scholar 

  • Kowalski JC, Belfort M, Stapleton MA, Holpert M, Dansereau JT, Pietrokovski S, Baxter SM, Derbyshire V (1999) Configuration of the catalytic GIY-YIG domain of intron endonuclease I-TevI: coincidence of computational and molecular findings. Nucleic Acids Res 27:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Kruger DH, Bickle TA (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47:345–360

    PubMed  CAS  Google Scholar 

  • Kvaratskhelia M, Wardleworth BN, Norman DG, White MF (2000) A conserved nuclease domain in the archaeal holliday junction resolving enzyme Hjc. J Biol Chern 275:25540–25546

    Article  CAS  Google Scholar 

  • Lagunavicius A, Siksnys V (1997) Site-directed mutagenesis of putative active site residues of MunI restriction endonuclease: replacement of catalytically essential carboxylate residues triggers DNAbinding specificity. Biochemistry 36:11086–11092

    Article  PubMed  CAS  Google Scholar 

  • Lagunavicius A, Sasnauskas G, Halford SE, Siksnys V (2003) The metal-independent Type lIS restriction enzyme BfiI is a dimer that binds two DNAsites but has only one catalytic centre. J Mol Biol 326(4):1051–64

    Article  PubMed  CAS  Google Scholar 

  • Li H, Abelson (2000) Crystal structure of a dimeric archaeal splicing endonuclease. J Mol Biol 302:639–648

    Article  PubMed  CAS  Google Scholar 

  • Li H, Trotta CR, Abelson J (1998) Crystal structure and evolution of a transfer RNAsplicing enzyme. Science 280:279–284

    Article  PubMed  CAS  Google Scholar 

  • Lin LF, Posfai J, Roberts RJ, Kong H (2001) Comparative genomics of the restrictionmodification systems in Helicobacter pylori. Proc Natl Acad Sci USA 98:2740–2745

    Article  PubMed  CAS  Google Scholar 

  • Lukacs CM, Kucera R, Schildkraut I, Aggarwal AK (2000) Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 Å resolution. Nat Struct Biol 7:134–140

    Article  PubMed  CAS  Google Scholar 

  • Lunnen KD, Barsomian JM, Camp RR, Card CO, Chen SZ, Croft R, Looney MC, Meda MM, Moran LS, Nwankwo DO (1988) Cloning type-II restriction and modification genes. Gene 74:25–32

    Article  PubMed  CAS  Google Scholar 

  • Luria SE, Human ML (1952) A nonhereditary, host-induced variation of bacterial viruses. J Bacteriol 64:557–569

    PubMed  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin-a fold for all reasons. Structure 3:245–250

    Article  PubMed  CAS  Google Scholar 

  • Matveyev AV, Young KT, Meng A, Elhai J (2001) DNAmethyltransferases of the cyanobacterium Anabaena PCC 7120. Nucleic Acids Res 29:1491–1506

    Article  PubMed  CAS  Google Scholar 

  • May AC (1999) Toward more meaningful hierarchical classification of protein threedimensional structures. Proteins 37:20–29

    Article  PubMed  CAS  Google Scholar 

  • McClarin JA, Frederick CA, Wang BC, Greene P, Boyer HW, Grable J, Rosenberg JM (1986) Structure of the DNA-Eco RI endonuclease recognition complex at 3 Aresolution. Science 234:1526–1541

    Article  PubMed  CAS  Google Scholar 

  • Morgan RD, Xiao JP, Xu SY (1998) Characterization of an extremely thermostable restriction enzyme, PspGI, from a Pyrococcus strain and cloning of the PspGI restriction-modification system in Escherichia coli. Appl Environ Microbiol 64:3669–3673

    PubMed  CAS  Google Scholar 

  • Mucke M, Grelle G, Behlke J, Kraft R, Kruger DH, Reuter M (2002) EcoRII: a restriction enzyme evolving recombination functions? EMBO J 21:5262–5268

    Article  PubMed  Google Scholar 

  • Murzin AG (1998) How far divergent evolution goes in proteins. Curr Opin Struct Biol 8: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Nastri HG, Evans PD, Walker IH, Riggs PD (1997) Catalytic and DNAbinding properties of Pvull restriction endonuclease mutants. J Biol Chern 272:25761–25767

    Article  CAS  Google Scholar 

  • Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet 30:371–403

    Article  PubMed  CAS  Google Scholar 

  • Newman M, Lunnen K, Wilson G, Greci J, Schildkraut I, Phillips SE (1998) Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. EMBO J 17:5466–5476

    Article  PubMed  CAS  Google Scholar 

  • Newman M, Strzelecka T, Dorner LF, Schildkraut I, Aggarwal AK (1994) Structure of restriction endonuclease BamHI and its relationship to EcoRI. Nature 368:660–664

    Article  PubMed  CAS  Google Scholar 

  • Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K (2001) Crystal structure of the Archaeal Holliday junction resolvase Hjc and implications for DNA recognition. Structure 9:197–204

    Article  PubMed  CAS  Google Scholar 

  • Nobusato A, Uchiyama I, Kobayashi I (2000a) Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 259:89–98

    Article  PubMed  CAS  Google Scholar 

  • Nobusato A, Uchiyama I, Ohashi S, Kobayashi I (2000b) Insertion with long target duplication: a mechanism for gene mobility suggested from comparison of two related bacterial genomes. Gene 259:99–108

    Article  PubMed  CAS  Google Scholar 

  • Nolling J, de Vos WM (1992) Characterization of the archaeal, plasmid-encoded Type II restriction-modification system Mth’I’I from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPiII system from Neisseria gonorrhoeae. J Bacteriol 174: 5719–5726

    PubMed  CAS  Google Scholar 

  • Pingoud A, Jeltsch A (1997) Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem 246:1–22

    Article  PubMed  CAS  Google Scholar 

  • Pingoud A, Jeltsch A (2001) Structure and function of Type II restriction endonucleases. Nucleic Acids Res 29:3705–3727

    Article  PubMed  CAS  Google Scholar 

  • Pingoud V, Kubareva E, Stengel G, Friedhoff P, Bujnicki JM, Urbanke C, Sudina A, Pingoud A (2002) Evolutionary relationship between different subgroups of restriction endonucleases. J BioI Chern 277:14306–14314

    Article  CAS  Google Scholar 

  • Reuter M, Schneider-Mergener J, Kupper D, Meisel A, Mackeldanz P, Kruger DH, Schroeder C (1999) Regions of endonuclease EcoRII involved in DNAtarget recognition identified by membrane-bound peptide repertoires. J BioI Chern 274:5213–5221

    Article  CAS  Google Scholar 

  • Rigden DJ, Setlow P, Setlow B, Bagyan I, Stein RA, Iedrzejas MJ (2002) PrfA protein of Bacillus species: prediction and demonstration of endonuclease activity on DNA. Protein Sci 11:2370–2381

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Macelis D (2001) REBASE-restriction enzymes and methylases. Nucleic Acids Res 29:268–269

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SK, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Iaenhammer T, Kobayashi I, Kong H, Kruger D, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin V, Selker E, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (2003a) Anomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31(7):1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2003b) REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res 31:418–420

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Danchin A, Viari A (2001) Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11:946–958

    Article  PubMed  CAS  Google Scholar 

  • Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2:S19–S24

    Article  PubMed  CAS  Google Scholar 

  • Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318:595–608

    Article  PubMed  CAS  Google Scholar 

  • Sapranauskas R, Sasnauskas G, Lagunavicius A, Vilkaitis G, Lubys A, Siksnys V (2000) Novel subtype of Type Ils restriction enzymes. J Biol Chern 275:30878–30885

    Article  CAS  Google Scholar 

  • Siksnys V, Zareckaja N, Vaisvila R, Timinskas A, Stakenas P, Butkus V, Janulaitis A (1994) CAATTG-specific restriction-modification MunI genes from Mycoplasma: sequence similarities between R.MunI and R.EcoRI. Gene 142:1–8

    Article  PubMed  CAS  Google Scholar 

  • Siksnys V, Timinskas A, Klimasauskas S, Butkus V, Janulaitis A (1995) Sequence similarity among type-II restriction endonucleases, related by their recognized 6-bp target and tetranucleotide-overhang cleavage. Gene 157:311–314

    Article  PubMed  CAS  Google Scholar 

  • Silva GH, Dalgaard JZ, Belfort M, Van Roey P (1999) Crystal structure of the thermostable archaeal intron-encoded endonuclease I-DmoI. J Mol Biol 286:1123–1136

    Article  PubMed  CAS  Google Scholar 

  • Skirgaila R, Grazulis S, Bozic D, Huber R, Siksnys V (1998) Structure-based redesign of the catalytic/metal binding site of Cfrl0I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues. J Mol Biol 279:473–481

    Article  PubMed  CAS  Google Scholar 

  • Stephenson FH, Ballard BT, Boyer HW, Rosenberg JM, Greene PJ (1989) Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases. Gene 85:1–13

    Article  PubMed  CAS  Google Scholar 

  • Tamulaitis G, Solonin AS, Siksnys V (2002) Alternative arrangements of catalytic residues at the active sites of restriction enzymes. FEBS Lett 518:17–22

    Article  PubMed  CAS  Google Scholar 

  • Thielking V, Selent U, Kohler E, Wolfes H, Pieper U, Geiger R, Urbanke C, Winkler FK, Pingoud A (1991) Site-directed mutagenesis studies with EcoRV restriction endonuclease to identify regions involved in recognition and catalysis. Biochemistry 30:6416–6422

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a structural perspective. J Mol Biol 307:1113–1143

    Article  PubMed  CAS  Google Scholar 

  • Todone F, Weinzierl RO, Brick P, Onesti S (2000) Crystal structure of RPB5, a universal eukaryotic RNApolymerase subunit and transcription factor interaction target. Proc Nat! Acad Sci USA 97:6306–6310

    Article  PubMed  CAS  Google Scholar 

  • Tsutakawa SE, Jingarni H, Morikawa K (1999a) Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell 99:615–623

    Article  PubMed  CAS  Google Scholar 

  • Tsutakawa SE, Muto T, Kawate T, Jingami H, Kunishima N, Ariyoshi M, Kohda D, Nakagawa M, Morikawa K (1999b) Crystallographic and functional studies of very short patch repair endonuclease. Mol Cell 3:621–628

    Article  PubMed  CAS  Google Scholar 

  • van der Woerd MJ, Pelletier JJ, Xu S, Friedman AM (2001) Restriction enzyme BsoBIDNA complex: a tunnel for recognition of degenerate DNA sequences and potential histidine catalysis. Structure (Camb) 9:133–144

    Article  Google Scholar 

  • Van Roey P, Meehan L, Kowalski JC, Belfort M, Derbyshire V (2002) Catalytic domain structure and hypothesis for function of GIY-YIG intron endonuclease I-TevI. Nat Struct Biol 9:806–811

    PubMed  Google Scholar 

  • Venclovas C, Timinskas A, Siksnys V (1994) Five-stranded beta-sheet sandwiched with two alpha-helices: a structural link between restriction endonucleases EcoRI and EcoRV. Proteins 20:279–282

    Article  PubMed  CAS  Google Scholar 

  • Viadiu H, Aggarwal AK (1998) The role of metals in catalysis by the restriction endonuclease BamHI. Nat Struct Biol 5:910–916

    Article  PubMed  CAS  Google Scholar 

  • Wah DA, Hirsch JA, Dorner LF, Schildkraut I, Aggarwal AK (1997) Structure of the multimodular endonuclease FokI bound to DNA. Nature 388:97–100

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen R, Julin DA (2000) A single nuclease active site of the Escherichia coli RecBCDenzyme catalyzes single-stranded DNA degradation in both directions. J Biol Chern 275:507–513

    Article  CAS  Google Scholar 

  • Wilson GG (1991) Organization of restriction-modification systems. Nucleic Acids Res 19:2539–2566

    Article  PubMed  CAS  Google Scholar 

  • Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet 25:585–627

    Article  PubMed  CAS  Google Scholar 

  • Winkler FK, Banner DW, Oefner C, Tsernoglou D, Brown RS, Heathman SP, Bryan RK, Martin PD, Petratos K, Wilson KS (1993) The crystal structure of EcoRVendonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J 12:1781–1795

    PubMed  CAS  Google Scholar 

  • Withers BE, Ambroso LA, Dunbar JC (1992) Structure and evolution of the XcyI restriction-modification system. Nucleic Acids Res 20:6267–6273

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Lunnen KD, Kong H (2001) Engineering a nicking endonuclease N.AlwIby domain swapping. Proc Natl Acad Sci USA 98:12990–12995

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Malik HS, Eickbush TH (1999) Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc Natl Acad Sci USA 96:7847–7852

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bujnicki, J.M. (2004). Molecular Phylogenetics of Restriction Endonucleases. In: Pingoud, A.M. (eds) Restriction Endonucleases. Nucleic Acids and Molecular Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18851-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18851-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62324-0

  • Online ISBN: 978-3-642-18851-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics