Skip to main content
Log in

Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

A distance measure that reflects the dissimilarity among structures has been developed on the basis of the three-dimensional structures of similar proteins, this being totally independent of sequence in the sense that only the relative spatial positions of mainchain alpha-carbon atoms need be known. This procedure leads to phyletic relationships that are in general correlated with the sequence phylogenies based on residue type. Such relationships among known protein three-dimensional structures are also a useful aid to their classification and selection in knowledge-based modeling using homologous structures. We have applied this approach to six homologous sets of proteins: immunoglobulin fragments, globins, cytochromesc, serine proteinases, eye-lens gamma crystallins, and dinucleotide-binding domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler RP, Meyer TE, Kamen MD, Schichman SA, Sawyer L (1981) A reassessment of the structure ofParacoccus cytochromec-550. J Mol Biol 147:351–356

    Article  PubMed  Google Scholar 

  • Argos P, Hanei M, Wilson JM, Kelley WN (1983) A possible nucleotide-binding domain in the tertiary fold of phosphoribosyltransferases. J Biol Chem 25:6450–6457

    Google Scholar 

  • Arutyunyan ÉG, Kuranova IP, Vainshtein BK, Steigemann W (1980) X-ray structural investigation of leghemoglobin VI. Structure of acetate-ferrileghemoglobin at a resolution of 2.0 A. Krystallografiya 25:80–103

    Google Scholar 

  • Bajaj M, Blundell T (1984) Evolution and the tertiary structure of proteins. Annu Rev Biophys Bioeng 13:453–492

    Article  PubMed  Google Scholar 

  • Baldwin JM (1980) The structure of human carbonmonoxy haemoglobin at 2.7 Å resolution. J Mol Biol 136:103–128

    Article  PubMed  Google Scholar 

  • Barker WC, Ketcham LK, Dayhoff MO (1978) Immunoglobulins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 197–227

    Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJB, Meyer eF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer based archival file for macromolecular structures. J Mol Biol 112:535–542

    PubMed  Google Scholar 

  • Birktoft JJ, Banaszak LJ (1983) The presence of a histidineaspartic acid pair in the active site 2-hydroxyacid dehydrogenases. X-ray refinement of cytoplasmic malate dehydrogenase. J Bio. Chem 258:472–482

    Google Scholar 

  • Blundell T, Lindley P, Miller L, Moss D, Slingsby C, Tickle I, Turnell B, Wistow G (1981) The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature 289:771–777

    PubMed  Google Scholar 

  • Blundell T, Carney D, Gardner S, Hayes F, Howlin B, Hubbard T, Overington J, Singh DA, Sibanda BL, Sutcliffe M (1988a) Knowledge-based protein modelling and design. Eur J Biochem 172:513–520

    Article  PubMed  Google Scholar 

  • Blundell TL, Elliot G, Gardner SP, Hubbard T, Islam I, Johnson M, Mantafounis D, Murray-Rust P, Overington J, Pitts JE, Šali A, Sibanda BL, Singh J, Sternberg MJE, Sutcliffe MJ, Thornton JM, Travers P (1988b) Protein engineering and design. Phil Trans R Soc Lond, series B (in press)

  • Bode W, Chen Z, Bartels K, Kutzbach C, Schmidt-Kastner G, Bartunik H (1983) Refined 2 Å x-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol 164:237–282

    Article  PubMed  Google Scholar 

  • Bolton W, Perutz MF (1970) Three dimensional Fourier synthesis of horse deoxyhaemoglobin at 2.8 Å resolution. Nature 228:551–552

    PubMed  Google Scholar 

  • Brändén C-I, Schneider G, Lindqvist Y, Andersson I, Knight S, Lorimer G (1987) Structural and evolutionary aspects of the key enzymes in photorespiration; RuBisCO and glycolate oxidase. Cold Spring Harbor Symp Quant Biol LII:491–498

    Google Scholar 

  • Buehner M, Ford GC, Moras D, Olsen KW, Rossmann MG (1973) D-glyceraldehyde-3-phosphate dehydrogenase: three dimensional structure and evolutionary significance. Proc Natl Acad Sci USA 70:3052–3054

    PubMed  Google Scholar 

  • Carter DC, Melis KA, O'Donnell SE, Burgess BK, Furey WF, Wang B-C, Stout CD (1985) Crystal structure ofAzotobacter cytochromec 5 at 2.5 Å resolution. J Mol Biol 184:279–295

    Article  PubMed  Google Scholar 

  • Cederlund E, Lindqvist Y, Söderlund G, Brändén C-I, Jörnvall H (1988) Primary structure of glycolate oxidase from spinach. Eur J Biochem 173:523–530

    PubMed  Google Scholar 

  • Chothia, C, Lesk AM (1982) Evolution of proteins formed by β-sheets: I. Plastocyanin and azurin. J Mol Biol 160:309–323

    Article  PubMed  Google Scholar 

  • Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  Google Scholar 

  • Crippen GM (1977) A novel approach to calculation of conformation: distance geometry. J Comp Physiol 24:96–107

    Google Scholar 

  • Deisenhofer J (1981). Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A fromStaphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:2361–2370

    PubMed  Google Scholar 

  • Dickerson RE (1971) The structure of cytochromec and the rates of molecular evolution. J Mol Evol 1:26–45

    Article  PubMed  Google Scholar 

  • Dickerson RE, Timkovitch R, almassy RJ (1976) The cytochrome fold and the evolution of bacterial energy metabolism. J Mol Biol 100:473–491

    PubMed  Google Scholar 

  • Doolittle RF (1979) Protein evolution. In: Neurath H, Hill RL (eds) The proteins, vol IV, ed 3. Academic Press, New York, pp 1–118

    Google Scholar 

  • Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry?. Science 214:149–159

    PubMed  Google Scholar 

  • Eklund H, Nordström B, Zeppezauer E, Söderlund G, Ohlsson I, Boiwe T, Söderberg B-O, Tapia O, Brändén C-I, Ekeson E (1976) Three-dimensional structure of horse liver alcohol dehydrogenase at 2.4 Å resolution. J Mol Biol 102:27–59

    PubMed  Google Scholar 

  • Epp O, Lattman EE, Schiffer M, Huber R, Palm W (1975) The molecular structure of a dimer composed of the Bence-Jones protein Rei refined at 2.0 Å resolution. Biochemistry 14:4943–4952

    Article  PubMed  Google Scholar 

  • Eventoff W, Rossmann MG (1975) The evolution of dehydrogenases and kinases. CRC Crit Rev Biochem 3:111–140

    PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Feng D-F, Doolittle RF (1987) Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol 25: 351–360

    PubMed  Google Scholar 

  • Feng D-F, Johnson MS, Doolittle RF (1985) Aligning amino acid sequences: comparison of commonly used methods. J Mol Evol 21:112–125

    Article  Google Scholar 

  • Fermi G, Perutz M, Shaanan B, Fourme R (1984) The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J Mol Biol 175:159–174

    Article  PubMed  Google Scholar 

  • Ferro DR, Hermans J (1977) A different best rigid-body molecular fit routine. Acta Crystallogr A33:345–347

    Article  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 15:279–284

    Google Scholar 

  • Fredman ML (1984) Computing evolutionary similarity measures with length independent gap penalties. Bull Math Biol 46:553–566

    Article  Google Scholar 

  • Frier JA, Perutz MF (1977) Structure of human foetal deoxyhaemoglobin. J Mol Biol 112:97–112

    PubMed  Google Scholar 

  • Fujinaga M, James MNG (1987) Rat submaxillary gland protease, tonin. Structure solution and refinement at 1.8 Å resolution. J Mol Biol 195:373–396

    Article  PubMed  Google Scholar 

  • Fujinaga M, Delbaere LTJ, Brayer GD, James MNG (1985) Refined structure ofα-lytic proteinase at 1.7 Å resolution. Analysis of hydrogen bonding and solvent structure. J Mol Biol 184:479–502

    Article  PubMed  Google Scholar 

  • Furey W, Wang BC, Yoo CS, Sax M (1983) Structure of a novel Bence-Jones protein (Rhe) fragment at 1.6 Å resolution. J Mol Biol 167:661–692

    PubMed  Google Scholar 

  • Girling RL, Houston TE, Schmidt WC, Amma EL (1980) Macromolecular structure refinement by restrained least-squares and interactive graphics as applied to sickling deer type III hemoglobin. Acta Crystallogr A36:43–50

    Article  Google Scholar 

  • Goodman M, Moore GW, Masuda G (1975) Darwinian evolution in the genealogy of haemoglobin. Nature 253:603–608

    Article  PubMed  Google Scholar 

  • Haser R, Pierrot M, Frey M, Payan F, Astier JP, Bruschi M, Le Gall J (1979) Structure and sequence of the multihaem cytochromec 3. Nature 282:806–810

    Article  PubMed  Google Scholar 

  • Higuchi Y, Kusunoki M, Matsuura Y, Yasuoka N, Kakudo M (1984) Refined structure of cytochromec 3 at 1.8 Å resolution. J Mol Biol 172:109–139

    Article  PubMed  Google Scholar 

  • Honzatko RB, Hendrickson WA, Love WE (1985) Refinement of a molecular model for lamprey hemoglobin fromPetromyzon marinus J Mol Biol 184:147–164

    Article  PubMed  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441

    Google Scholar 

  • Hubbard TJP, Blundell TL (1987) Comparison of solvent-inaccessible cores of homologous proteins: definitions useful for protein modelling. Protein Eng 1:159–171

    PubMed  Google Scholar 

  • Hunt LT, Hurst-Calderone S, Dayhoff MO (1978) Globins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 229–249

    Google Scholar 

  • James MNG, Sielecki AR, Brayer GD, Delbaere LTJ, Bauer C-A (1980) Structures of product and inihibitor complexes ofStreptomyces griseus protease A at 1.8 Å resolution. A model for serine proteinase catalysis. J Mol Biol 144:43–88

    Article  PubMed  Google Scholar 

  • Jennings A (1978) Matrix computations for engineers and scientists. John Wiley and Sons, Chichester

    Google Scholar 

  • Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallogr A34: 827–828

    Article  Google Scholar 

  • Kenknight CE (1984) Comparison of methods of matching protein structures. Acta Crystallogr A40:708–712

    Article  Google Scholar 

  • Kernighan BW, Ritchie DM (1978) The C programming language. Prentice-Hall, Englewoods Cliffs NJ

    Google Scholar 

  • Kortt AA, Burns JE, Trinick MJ, Appleby CA (1985) The amino acid sequence of hemoglobin I fromParasponia andersonii, a nonleguminous plant. FEBS Lett 180:55–60

    Article  Google Scholar 

  • Lazure C, Leduc C, Seidah NG, Thilbault G, Genest J, Chritien M (1984) Amino acid similarity of rat submaxillary tonin reveals similarities to serine proteases. Nature 307:555–558

    Article  PubMed  Google Scholar 

  • Lesk AM, Chothia C (1980) How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol 136: 225–270

    Article  PubMed  Google Scholar 

  • Lesk AM, Chothia C (1982) Evolution of proteins formed by β-sheets. II. The core of the immunoglobulin domains. J Mol Biol 160:325–342

    Article  PubMed  Google Scholar 

  • Leunissen JAM, de Jong WW (1986) Phylogenetic trees constructured from the hydrophobic values of protein sequences. J Theor Biol 119:189–196

    PubMed  Google Scholar 

  • Marquart M, Deisenhofer J, Huber R, Palm W (1980) Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J Mol Biol 141:369–391

    Article  PubMed  Google Scholar 

  • Matsuura Y, Takano T, Kickerson RE (1982) Structure of cytochromec 551 fromP. aeruginosa refined at 1.6 Å resolution and comparison of the two redox forms. J Mol Biol 156:389–409

    Article  PubMed  Google Scholar 

  • Matthews BW, Rossmann MG (1985) Comparison of protein structures. Methods Enzymol 115:397–420

    PubMed  Google Scholar 

  • McLachlan AD (1979) Gene duplications in the structural evolution of chymotrypsin. J Mol Biol 128:49–79

    Article  PubMed  Google Scholar 

  • McLachlan AD (1982) Rapid comparison of protein structures, Acta Crystallogr A34:871–873

    Article  Google Scholar 

  • Meyer E, Cole G, Radahakrishnan R, Epp O (1988) Structure of native porcine pancreatic elastase at 1.65 Å resolution. Acta Crystallogr B44:26–38

    Article  PubMed  Google Scholar 

  • Moras D, Olsen KW, Sabesan MN, Buehner M, Ford GC, Rossmann MG (1975) Studies of the asymmetry in the three dimensional structure of lobster D-glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 250:9137–9162

    PubMed  Google Scholar 

  • Needleman SA, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  PubMed  Google Scholar 

  • Ochi H, Hata Y, Tanaka N, Kanudo M, Sakurai T, Aihara S, Morita Y (1983) Structure of rice ferricytochromec at 2.0 Å resolution. J Mol Biol 166:407–418

    PubMed  Google Scholar 

  • Ohlsson I, Nordström B, Brändén C-I (1974) Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J Mol Biol 89:339–354

    Article  PubMed  Google Scholar 

  • Padlan EA, Love WE (1985) Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-Å resolution. J Biol Chem 260:8272–8279

    PubMed  Google Scholar 

  • Pai EF, Karplus PA, Schulz GE (1988) Crystallographic analysis of the binding of NADPH, NADPH fragments, and NADPH analogues to glutathione reductase. Biochemistry 27:4465–4474

    Article  PubMed  Google Scholar 

  • Pierrot M, Haser R, Frey M, Payan F, Astier J-P (1982) Crystal structures and electron transfer properties of cytochromec 3. J Biol Chem 257:14341–14348

    PubMed  Google Scholar 

  • Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256

    Article  PubMed  Google Scholar 

  • Read RJ, James MNG (1988) Refined crystal structure ofStreptomyces griseus trypsin at 1.7 Å resolution. J Mol Biol 200: 523–551

    Article  PubMed  Google Scholar 

  • Reynolds RA, Remington SJ, Weaver LH, Fisher RG, Anderson WF, Ammon HL, Matthews BW (1985) Structure of a serine protease from rat mast cells determined from twinned crystals by isomorphous and molecular replacement. Acta Crystallogr B41:139–147

    Article  Google Scholar 

  • Richardson JS (1977) β-sheet topology and the relatedness of proteins. Nature 268:495–500

    Article  PubMed  Google Scholar 

  • Rossmann MG, Moras D, Olsen KW (1974) Chemical and biological evolution of a nucleotide-binding protein. Nature 250:194–199

    Article  PubMed  Google Scholar 

  • Salemme FR, Freer ST, Xuong NH, Alden RA, Kraut J (1973) The structure of oxidized cytochromec 2 ofRhodospirillum rubrum. J Biol Chem 248:3910–3921

    PubMed  Google Scholar 

  • Šali A, Turk V (1987) Prediction of the secondary structures of stefins and cystatins, the low-molecular mass protein inhibitors of cysteine proteinases. Biol Chem Hoppe-Seyler 368: 493–499

    PubMed  Google Scholar 

  • Saul FA, Amzel LM, Poljack RJ (1978) Preliminary refinement and structural analysis of the FAB fragment from human immunoglobulin NEW at 2.0 Å resolution. J Biol Chem 253: 585–597

    PubMed  Google Scholar 

  • Schreuder HA, van der Laan JM, Hol WGT, Drenth J (1988) Crystal structure ofp-hydroxybenzoate hydroxylase complexed with its reaction product. J Mol Biol 199:637–648

    Article  PubMed  Google Scholar 

  • Schulz GE, Schirmer RH, Sachsenheimer W, Pai EF (1978) The structure of the flavoenzyme glutathione reductase. Nature 273:120–124

    Article  PubMed  Google Scholar 

  • Schwartz RM, Dayhoff MO (1978) Cytochromes. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation. Washington DC, pp 29–44

    Google Scholar 

  • Shaanan B (1983) Structure of human oxyhaemoglobin at 2.1 Å resolution. J Mol Biol 171:31–59

    PubMed  Google Scholar 

  • Steigemann W, Weber E (1979) Structure of erythrocruorin in different ligand states refined at 1.4 Å resolution. J Mol Biol 127:309–338

    Article  PubMed  Google Scholar 

  • Sutcliffe MJ, Haneef I, Carney D, Blundell TL (1987a) Knowledge based modelling of homologous proteins, part I: threedimensional frameworks derived from simultaneous superposition of multiple structures. Protein Eng 1:377–384

    PubMed  Google Scholar 

  • Sutcliffe MJ, Hayes FRF, Blundell TL (1987b) Knowledgebased modelling of homologous proteins, part II: rules for the conformations of substituted sidechains. Protein Eng 1:385–392

    PubMed  Google Scholar 

  • Takano T (1977) Structure of myoglobin at 2.0 Å resolution, II. Structure of deoxymyoglobin from sperm whale. J Mol Biol 110:569–584

    PubMed  Google Scholar 

  • Takano T, Dickerson RE (1981a) Conformational changes of cytochromec. I. Ferrocytochromec structure refined at 1.5 Å resolution. J Mol Biol 153:79–94

    Article  PubMed  Google Scholar 

  • Takano T, Dickerson RE (1981b) Conformational changes of cytochromec. II. Ferricytochromec refinement at 1.8 Å resolution and comparison with the ferrocytochrome structure. J Mol Biol 153:95–115

    Article  PubMed  Google Scholar 

  • Thieme R, Pai EF, Schirmer RH, Schulz GE (1981) Threedimensional structure of glutathione reductase at 2 Å resolution. J Mol Biol 152:763–782

    Article  PubMed  Google Scholar 

  • Thorndike RM (1978) Correlation procedures for research. Gardner Press, New York, pp 1–340

    Google Scholar 

  • Timkovich R, Dickerson RE (1976) The structure ofParacoccus denitrificans cytochromec 550. J Biol Chem 251:4033–4046

    PubMed  Google Scholar 

  • Tsukada H, Blow DM (1985) Structure ofα-chymotrypsin refined at 1.68 Å resolution. J Mol Biol 184:703–711

    Article  PubMed  Google Scholar 

  • Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial hemoglobin fromVitreoscilla. Nature 322:481–483

    Article  PubMed  Google Scholar 

  • Walter J, Steigemann W, Singh JP, Bartunik H, Bode W, Huber R (1982) On the disordered activation domain in trypsinogen. Chemical labelling and low-temperature crystallography. Acta Crystallogr B38:1462–1472

    Article  Google Scholar 

  • White, JL, Hackert ML, Buehner M, Adams MJ, Ford GC, Lentz PJ, Smiley IE, Steindel SJ, Rossmann MG (1976) A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J Mol Biol 102:759–779

    Article  PubMed  Google Scholar 

  • White HE, Driessen HPC, Slingsby C, Moss DS, Turnell WG, Lindley PF, (1988a) The use of pseudosymmetry in the rotation function of γIVa-crystallin. Acta Crystallogr B44:172–178

    Article  PubMed  Google Scholar 

  • White HE, Driessen HPC, Slingsby C, Moss DS, Lindley PF (1988b) Packing interactions in the eye-lens: structural analysis, internal symmetry and lattice interactions of bovine gamma-IVa crystallin. J Mol Biol 207:217–235

    Article  Google Scholar 

  • Wierenga RK, Drenth J, Schulz GE (1983) Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain ofp-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. J Mol Biol 167:725–739

    PubMed  Google Scholar 

  • Wierenga RK, De Maeyer MCH, Hol WGJ (1985) Interactions of pyrophosphate moieties withα-helices in dinucleotide binding proteins. Biochemistry 24:1346–1357

    Article  Google Scholar 

  • Wierenga RK, Terpstra P, Hol WG (1986) Prediction of the occurrence of the ADP βαβ-fold in proteins, using amino acid fingerprints. J Mol Biol 187:101–107

    Article  PubMed  Google Scholar 

  • Wistow G, Turnell B, Summers L, Slingsby C, Moss D, Miller L, Lindley P, Blundell T (1983) X-ray analysis of the eye lens protein gamma-II crystallin at 1.9 Å resolution. J Mol Biol 170:175–202

    PubMed  Google Scholar 

  • Young CL, Barker WC, Tomaselli CM, Dayhoff MO (1978) Serine proteases. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 73–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.S., Sutcliffe, M.J. & Blundell, T.L. Molecular anatomy: Phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30, 43–59 (1990). https://doi.org/10.1007/BF02102452

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02102452

Key words

Navigation