Skip to main content

Basic Principles and Physics of Duplex and Color Doppler Imaging

  • Chapter
Duplex and Color Doppler Imaging of the Venous System

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Doppler ultrasound has been used in medicine since the mid-1970s, mainly for the diagnosis of vascular disease like occlusion or stenosis (Keller et al. 1975; Fitzgerald et al. 1977; Weaver et al. 1980; Brown et al. 1982). The first systems developed were based on the continuous-wave (CW) spectral Doppler ultrasound technique with separate transmitter and receiver elements (Brody et al. 1974; Di Pietro et al. 1978). In 1983, pulsed-wave (PW) color Doppler imaging (CDI) systems were introduced clinically for color coding the detected blood flow in real-time (Atkinson et al. 1982). In the past, these early CDI systems were restricted to an evaluation of only a few well-defined medical indications in cardiac disease where the blood velocity is very high. A newer generation of CDI systems has allowed us, since 1986, to detect and display lower blood velocities occurring in peripheral arteries or veins (Kasai et al. 1985; Merritt et al. 1987; Klews 1987; Scoutt et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott JG (1999) Rational and derivation of MI and TI-a review. Ultrasound Med Biol 25:431–441

    Article  PubMed  CAS  Google Scholar 

  • Adam DR, Burstein P (1997) Vascular imaging by ultrasound: 3D reconstruction of flow velocity fields for endothelial shear stress calculation. Adv Exp Med Biol 430:177–185

    Article  PubMed  CAS  Google Scholar 

  • Adler RS, Rubin JM et al (1995) Ultrasonic estimation of tissue perfusion: a stochastic approach. Ultrasound Med Biol 21: 493–500

    Article  PubMed  CAS  Google Scholar 

  • American Institute of Ultrasound in Medicine, National Electrical Manufacturers Association (eds) (1992) Standard for real-time display of thermal and mechanical acoustic output indices on diagnostic ultrasound equipment. AIUM/NEMA, Rockville

    Google Scholar 

  • Atkinson P, Woodcock JP (1982) Doppler ultrasound and its use in clinical measurement. Academic, London

    Google Scholar 

  • Babcock DS, Patriquin H et al (1996) Power Doppler sonography: basic principles and clinical applications in children. Pediatr Radiol 26:109–115

    Article  PubMed  CAS  Google Scholar 

  • Barnett SB (1998) Update on thermal bioeffects issues. Ultrasound Med Biol 24 [Suppl 1]:S1–S10

    Google Scholar 

  • Barnett SB, Rott H-D, Ter Haar G, Ziskin MC, Maeda K (1997) The sensitivity of biological tissue to ultrasound. Ultrasound Med Biol 23:805–812

    Article  PubMed  CAS  Google Scholar 

  • Barnett SB, Ter Haar GR, Ziskin MC, Rott H-D, Maeda K (2000) International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med Biol 26:805–812

    Article  Google Scholar 

  • Barry CD, Allott CP, John NW, Mellor PM, Arundel PA, Thomson DS, Waterton JC (1997) Three-dimensional freehand ultrasound: image reconstruction and volume analysis. Ultrasound Med Biol 23:1209–1224

    Article  PubMed  CAS  Google Scholar 

  • Battle DJ, Harrison RP, Hedley M (1997) Maximum entropy image reconstruction from sparsely sampled coherent field data. IEEE Trans Image Process 6:1139–1147

    Article  PubMed  CAS  Google Scholar 

  • Berg S, Torp H, Haugen BO, Samsted S (2000) Volumetrie blood flow measurements with the use of dynamic 3-dimensional ultrasound color flow imaging. J Am Soc Echocardiogr 13: 393–402

    PubMed  CAS  Google Scholar 

  • Bonnefous O, Pasqué P (1986) Time Domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation. Ultrasonic Imaging 8:73–85

    Article  PubMed  CAS  Google Scholar 

  • Brayman AA, Miller MW (1997) Acoustic cavitation nuclei survive the apparent ultrasonic destruction of Albunex7 microspheres. Ultrasound Med Biol 23:793–796

    Article  PubMed  CAS  Google Scholar 

  • Brody WR, Meindl JD (1974) Theoretical analysis of the CW doppler ultrasonic flowmeter. IEEE Trans Biomed Eng 21: 183–192

    Article  PubMed  CAS  Google Scholar 

  • Brown PM, Johnston KW, Kassam M, Cobbold RS (1982) A critical study of ultrasound Doppler spectral analysis for detecting carotid disease. Ultrasound Med Biol 8:515–523

    Article  PubMed  CAS  Google Scholar 

  • Burns PN (1987) The physical principles of Doppler and spectral analysis. J Clin Ultrasound 15:567–590

    Article  PubMed  CAS  Google Scholar 

  • Burns PN (1996) Harmonic imaging with ultrasound contrast agents. Clin Radiol 51:50–55

    PubMed  Google Scholar 

  • Burns PN, Powers JE et al (1994) Power Doppler imaging combined with contrast-enhancing harmonic Doppler: new method for small-vessel imaging. Radiology 193:366

    Google Scholar 

  • Burns PN, Powers JE, Hope-Simpson D et al (1995) Harmonic power mode Doppler using microbubble contrast agents. An improved method for small vessel flow imaging. J Echogr Med Ultrason 16:132–142

    Google Scholar 

  • Carson PL, Li X, Pallister J et al (1993) Approximate quantification of detected fractional blood volume in the breast by 3D color flow and Doppler signal amplitude imaging. In: Levy M, McAvoy BR (eds) 1993 Ultrasonics Symposium Proceedings, IEEE Catalog No. 93CH33001-9. Institute of Electrical and Electronic Engineers, Piscataway, pp 1023–1026

    Google Scholar 

  • Carson PL, Moskalik AP, Govil A, Roubidoux MA et al (1997) The 3D and 2D color flow display of breast masses. Ultrasound Med Biol 23:837–849

    Article  PubMed  CAS  Google Scholar 

  • Chang PH, Shung KK, Levene HB (1996) Quantitative measurements of second harmonic Doppler using ultrasound contrast agents. Ultrasound Med Biol 22: 1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Christopher DA, Burns PN, Starkokoski BG, Foster FS (1997) A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation. Ultrasound Med Biol 23:997–1015

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D (1996) Why do we need contrast agents for ultrasound? Clin Radiol 51:1–4

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ, Penney DP, Carstensen EL (1997) Remnants of Albunex7 nuclate acoustic cavitation. Ultrasound Med Biol 23:1405–1412

    Article  PubMed  CAS  Google Scholar 

  • Di Pietro DM, Meindl JD (1978) Optimal system design for an implantable CW Doppler ultrasonic flowmeter. IEEE Trans Biomed Eng 25:255–264

    Article  PubMed  Google Scholar 

  • Docker MF, Duck FA ed. (1992) The safe use of diagnostic ultrasound. British Institute of Radiology, London

    Google Scholar 

  • Downey DB, Fenster A (1995) Vascular imaging with a three-dimensional power Doppler system. Am J Roentgenol 165: 665–668

    CAS  Google Scholar 

  • Duck FA, Martin K (1991) Trends in diagnostic ultrasound exposure. Phys Med Biol 36:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Dumire BL, Beach KW, Labs KH, Detmer PR, Standness DE (1995) A vector Doppler ultrasound instrument. IEEE Ultrason Symp Proc 2:1477–1480

    Google Scholar 

  • European Committee for Ultrasound Radiation Safety (1996) Tutorial paper: thermal and mechanical indices. Eur J Ultrasound 4:145–150

    Article  Google Scholar 

  • Fitzgerald DE, Drumm DE (1977) Non invasive measurement of human fetal circulation using ultrasound: a new method. Br J Obstet Gynaecol 2:1450–1451

    CAS  Google Scholar 

  • Giovagnorio F, Quaranta L (1995) Power Doppler sonography enhances visualization of orbital vessels. J Ultrasound Med 14:837–842

    PubMed  CAS  Google Scholar 

  • Goldberg BB, Liu J-B, Forsberg F (1994) Ultrasound contrast agents: a review. Ultrasound Med Biol 20:319–333

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Fenster A (1996) Three-dimensional power Doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound Med Biol 22:1059–1069

    Article  PubMed  CAS  Google Scholar 

  • Haerten R, Mück M (1992) Doppler-und Farbdoppler-Sonographie: Eine Einführung in die Grundlagen. Siemens Bereich Medizinische Technik

    Google Scholar 

  • Harvey CJ, Blomley MJK, Eckersley RJ, Cosgrove DO (2001) Developments in ultrasound contrast media. Eur Radiol 11:675–689

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto H, Shen Y, Takeuchi Y, Yoshitome E (1995) Ultrasound 3-dimensional image processing using power Doppler image. IEEE Ultrason Symp Proc 2:1423–1426

    Google Scholar 

  • Henderson J, Willson K, Jago JR, Whittingham TA (1995) A survey of the acoustic outputs of diagnostic ultrasound equipment in current clinical use. Ultrasound Med Biol 21:699–705

    Article  PubMed  CAS  Google Scholar 

  • Hennerici M, Neuerburg-Heusler D (1999) Gefäßdiagnostik mit Ultraschall. Thieme, Stuttgart

    Google Scholar 

  • Hoskins PR (1997) Vector Doppler. Eur J Ultrasound 6 [Suppl 2]:S7

    Article  Google Scholar 

  • Hoskins PR (1999) A review of the measurement of blood velocity and related quantities using Doppler ultrasound. Proc Inst Mech Eng 213:391–400

    CAS  Google Scholar 

  • Hoskins PR (2002) Ultrasound techniques for measurement of blood flow and tissue motion. Biorheology 39:451–459

    PubMed  CAS  Google Scholar 

  • International Electrotechnical Commission (2001) Ultrasonics-flow measurement systems-flow test object. IEC 61685 Standard. IEC Technical Committee 87, Geneva

    Google Scholar 

  • Jain SP, Fan PH, Philpot EF et al (1991) Influence of various instrument settings on the flow information derived from power mode. Ultrasound Med Biol 17:49–54

    Article  PubMed  CAS  Google Scholar 

  • Kasai C, Namekawa K, Koyano A, Omoto R (1985) Real-time two-dimensional blood flow imaging using autocorrelation technique. IEEE Trans Son Ultrason 32:458–464

    Article  Google Scholar 

  • Keller H, Muller A, Meier W, Schonbeck M (1975) Transorale Doppler-Sonographie unter Schleimhautanasthesie zur Beur-teilung der Strömungsverhältnisse in den Aa. vertebrales (Vertebralis-Doppler). Dtsch Med Wochenschr 100:937–938; 943-946

    Article  PubMed  CAS  Google Scholar 

  • Kiews PM (1987) The Philips quantum angiodynograph: an ultrasound system for vascular diagnostics. Medicamundi 32:77–79

    Google Scholar 

  • Kiews PM (1991) Color velocity imaging — ein Vergleich der Verfahren zur farbkodierten Sonographie. Röntgenstrahlen 65:1–8

    Google Scholar 

  • Kollmann C, Turetschek K, Backfrieder W et al (1995) Untersuchungen zur Detektion von low flow mit neuen Ultraschall-Farbdoppler-Techniken. Ultraschall Med 16:S81

    Article  Google Scholar 

  • Kollmann C, Turetschek K et al (1996a) Quantitative Untersuchungen mit dem amplitudenkodierten Farb-dopplergerät. Ultraschall Med 17:S5

    Google Scholar 

  • Kollmann C, Turetschek K, Backfrieder W et al (1996b) Quantitative Untersuchungen mit dem amplitudenkodierten Farbdopplergerät (in-vitro Studien). Gemeins. Jahrestagung DGMP, ÖGMP & SGSMP, Graz 1996. In: Medizinische Physik 1996, Tagungsband. DGMP, ÖGMP & SGSMP, Graz, pp 181–182

    Google Scholar 

  • Kollmann C, Turetschek K, Mostbeck G (1998) Amplitude coded color Doppler sonography. Eur Radiol 8:649–656

    Article  PubMed  CAS  Google Scholar 

  • Kollmann C, Bezemer RA, Fish P, Fredfeldt KE et al (1999) Ein Testobjekt für die apparative Qualitätssicherung bei Ultraschall-Doppler-(Duplex) Geräten, ausgehend vom Normenentwurf IEC 61685. Ultraschall Med 20:248–257

    Article  PubMed  CAS  Google Scholar 

  • Kollmann C, Greiffenberg B, Schlachetzki F et al (2001) 2-dimensional fusion of cerebral cross-modality images employing a mutual information algorithm. Phys Med 17: 267–270

    Google Scholar 

  • Langer SG, Carter SJ, Haynor DR et al (2001) Image acquisition: ultrasound, computed tomography, and magnetic resonance imaging. World J Surg 25:1428–1437

    PubMed  CAS  Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic, San Diego

    Google Scholar 

  • Li X, Wanitkun S, Li XN et al (2002) Quantification of instantaneous flow rate and dynamically changing effective orifice area using a geometry independent three-dimensional digital color Doppler method: an in vitro study mimicking mitral regurgitation. J Am Soc Echocardiogr 15:1189–1196

    Article  PubMed  Google Scholar 

  • Lyden PD, Nelson TR (1997) Visualization of the cerebral circulation using three dimensional transcranial power Doppler ultrasound imaging. J Neuroimaging 7:35–39

    PubMed  CAS  Google Scholar 

  • Madjar H, Pfleiderer A et al. (1996) Diagnosis by color Doppler and contrast agents. In: Figueira AS et al (eds) Mastology— breast diseases. Elsevier Science, Amsterdam, pp 69–75

    Google Scholar 

  • Mehwald PS, Rusk RA, Mori Y et al (2002) A validation study of aortic stroke volume using dynamic 4-dimensional color Doppler: an in vivo study. J Am Soc Echocardiogr 15: 1045–1050

    Article  PubMed  Google Scholar 

  • Merritt CRB (1987) Doppler color flow imaging. J Clin Ultrasound 15:591–597

    Article  PubMed  CAS  Google Scholar 

  • Merritt CRB (1991) Doppler US: The Basics. Radiographics 11:109–119

    PubMed  CAS  Google Scholar 

  • Miller DL, Thomas RM (1995) Ultrasound contrast agents nucleate inertial cavitation in vitro. Ultrasound Med Biol 21:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Missouris CG, Allen CM et al (1996) Non-invasive screening for renal artery stenosis with ultrasound contrast enhancement. J Hypertens 14:519–524

    PubMed  CAS  Google Scholar 

  • National Council on Radiation Protection and Measurements (1992) Exposure criteria for medical diagnostic ultrasound. I. Criteria based on thermal mechanisms. NCRP Report No. 113. NCRP, Bethesda

    Google Scholar 

  • Newhouse V, Reid J (1991) Invariance of the Doppler bandwidth with flow displacement in the illuminating field. J Acoust Soc Am 90:2595–2601

    Article  PubMed  CAS  Google Scholar 

  • Philips Medizin Systeme (1989) Duplexsonografische Referenzwerte. Produktinformation 794

    Google Scholar 

  • Phoon CK, Aristizabal O, Turnbull DH (2000) 40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo. Ultrasound Med Biol 26:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Porter TR (1997) Transient response during contrast echocardiography. Adv Card Echo Contrast 5:47–55

    Google Scholar 

  • Porter TR, Xie F, Li S et al (1996) Increased ultrasound contrast and decreased microbubble destruction rate using triggered ultrasound imaging. J Am Soc Echocardiogr 9:599–605

    Article  PubMed  CAS  Google Scholar 

  • Porter TR, Li S, Kilzer K, Deligonul U (1997) Effect of significant two-vessel versus one-vessel coronary artery stenosis on myocardial contrast defects observed with intermittent harmonic imaging after intravenous contrast injection during dobutamine stress echocardiography. J Am Coll Cardiol 30:1399–1406

    Article  PubMed  CAS  Google Scholar 

  • Preidler KW, Szolar DM et al (1995) Comparison of colour Doppler energy sonography with conventional colour Doppler sonography in detection of flow signals in peripheral renal transplant vessels. Br J Radiol 68:1103–1105

    Article  PubMed  CAS  Google Scholar 

  • Ritchie CJ, Edwards WS, Mack LA, Cyr DR, Kim Y (1996) Three-dimensional ultrasonic angiography using power-mode Doppler. Ultrasound Med Biol 22:277–286

    Article  PubMed  CAS  Google Scholar 

  • Rizzatto G (1998) Ultrasound transducers. Eur J Radiol 27 [Suppl 2]:S188–195

    Google Scholar 

  • Rubin JM, Adler RS (1993) Power Doppler expands standard color capability. Diagn Imaging 15:66–69

    CAS  Google Scholar 

  • Rubin JM, Bude RO, Carson PL et al (1994) Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology 190:853–856

    PubMed  CAS  Google Scholar 

  • Rubin JM, Adler RS et al (1995) Fractional moving blood volume: estimation with power Doppler US. Radiology 197:183–190

    PubMed  CAS  Google Scholar 

  • Schneider KTM, Dumler EA, Lippert A (1993) Umfrage zur Verbreitung und Anwendung der Dopplersonographie im deutschsprachigen Raum. Geburtshilfe Frauenheilkd 53:56–60

    Article  PubMed  CAS  Google Scholar 

  • Scoutt LM, Zawin ML, Taylor KJW (1990) Doppler US. IL Clinical applications. Radiology 174:309–319

    PubMed  CAS  Google Scholar 

  • Seitz K, Kubale R (1988) Duplexsonographie der abdominellen und retroperitonealen Gefäße. VCH, Weinheim

    Google Scholar 

  • Sitges M, Jones M, Shiota T et al (2003) Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 16:38–45

    Article  PubMed  Google Scholar 

  • Sohn C, Weskott HP, Schiesser M (1996) Sensitivity of new color systems: “Maximum entropy method” and angio-color. Comparative in vitro flow measurements. Ultraschall Med 17:138–142/SurgEndosc (1997) 11:1040-1046

    Article  PubMed  CAS  Google Scholar 

  • Steel R, Fish PJ (2002) Error propagation bounds in dual and triple beam vector Doppler ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 49:1222–1230

    Article  PubMed  Google Scholar 

  • Stetten G, Tamburo R (2001) Real-time three-dimensional ultrasound methods for shape analysis and visualization. Methods 25:221–230

    Article  PubMed  CAS  Google Scholar 

  • Taylor KJW, Burns PN, Wells PNT (1988) Clinical applications of Doppler ultrasound. Raven, New York

    Google Scholar 

  • Teirlinck CPJM et al (1998) Development of an example flow test object and comparison of five of these test objects, constructed in various laboratories. Ultrasonics 36:653–660

    Article  PubMed  CAS  Google Scholar 

  • Turetschek K, Kollmann C, Hittmair K et al (1995) Power Doppler versus color Doppler US in the detection of low flow: in vitro results. Radiology 197:338

    Google Scholar 

  • Turetschek K, Kollmann C, Mostbeck G (1998) Amplitude coded Doppler sonography: clinical applications. Eur Radiol 9:115–121

    Article  Google Scholar 

  • Weaver RG Jr, Howard G, McKinney WM, Ball MR, Jones AM, Toole JF (1980) Comparison of Doppler ultrasonography with arteriography of the carotid artery bifurcation. Stroke 11:402–404

    Article  PubMed  Google Scholar 

  • World Federation for Ultrasound in Medicine and Biology (1997) Secretary's report: WFUMB administrative council meeting, San Diego, March 26-27,1997. In: WFUMB News. WFUMB, San Diego, pp 2–3

    Google Scholar 

  • Yamada R, Hirai T et al (1995) Evaluation of power Doppler imaging for renal diseases. Jpn J Med Ultrason 22:15–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kollmann, C. (2004). Basic Principles and Physics of Duplex and Color Doppler Imaging. In: Mostbeck, G.H. (eds) Duplex and Color Doppler Imaging of the Venous System. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18589-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18589-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62181-9

  • Online ISBN: 978-3-642-18589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics