Skip to main content

Physical and Technical Principles of Doppler Sonography

  • Chapter
  • First Online:
Doppler Sonography in Infancy and Childhood

Abstract

The frequency shift postulated in 1842 by Christian Doppler as a consequence of a relative movement between wave transmitters and receivers was only utilized for the first time to capture intra-corporeal movements in the middle of the 20th century. During these initial experiments, Satomura first used an ultrasound beam focused on the heart to measure the contractile movements of the myocardium and later demonstrated that this method can also be used to detect blood flow.

When exposed to ultrasound, the frequency reflected by the corpuscular blood components changes as the reflectors approach the probe or move away from it. Since this frequency shift is proportionate to the flow velocity, by comparing the transmission and reception frequency, the velocity can be determined and displayed in the form of a spectral curve.

In CW (Continuous Wade) mode, all flows within the beam are captured, while PW (Pulsed Wave) mode allows the selective detection of flows along a narrowly circumscribed space known as the sample volume. To be able to visualize this sample volume, PW Dopplers are generally combined with imaging ultrasound equipment to create “duplex systems” and the measuring window displayed in the form of a cursor in the B image.

The color-coded Doppler creates a number of tiny measuring locations and selectively displays the documented flows in the form of corresponding pixels on a screen. The color (usually red and blue) allows conclusions to be drawn about the direction of flow, while the flow velocity is expressed by the brightness of the corresponding pixels.

Echo signals that do not have their frequency shifted are evaluated as reflections of static structures and are displayed in the form of gray values. As a result, the color-coded (Color Flow) mode corresponds to a B-image with the location-correct display of flow information.

The Doppler ultrasound capture of flows is to a large degree dependent on the angle between the ultrasound beam and the flow axis, can sometimes fail when capturing very high velocities and demonstrates only limited spatial resolution. Additional alternative methods have also recently become available that are based on subtraction methods and which go some way towards overcoming the described shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker DW (1969) Pulsed ultrasonic blood flow sensing. IEEE Trans Sonics Ultrason 17:170–185

    Google Scholar 

  • Bommer WJ, Miller L (1982) Realtime two-dimensional colorflow Doppler: enhanced Doppler flow imaging in the diagnosis of cardiovascular disease. Am J Cardiol 49:944

    Article  Google Scholar 

  • Buys-Ballot CHD (1845) Akustische Versuche auf der niederländischen Eisenbahn nebst gelegentlichen Bemerkungen zur Theorie des Hrn. Prof. Doppler. Pogg Ann 66:321–351

    Google Scholar 

  • Chiao RY, Mo LY, Hall AL, Miller SC, Thomenius KE (2000) B-mode blood flow (B-flow) imaging. In: Ultrasonics symposium 2000, IEEE, vol 2. IEEE, San Juan,pp 1469–1472. doi:10.1109/ULTSYM.2000.921601

  • Doppler C (1842) Über das farbige Licht der Doppelsterne. Prag Ostwalds Klassiker 161, Leipzig 1907

    Google Scholar 

  • Evans DH, McDicken WN, Skidmore R, Woodcock JP (1989) Doppler ultrasound. Physics, instrumentation and clinical applications. Wiley, New York, pp 153–155

    Google Scholar 

  • Fell G, Phillips DJ, Chikos PM, Harley JD, Thiele BL, Strandness DE (1981) Ultrasonic duplex scanning for disease of the carotid artery. Circulation 64:1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Fischer M, Wuppermann TH (1985) Einführung in die Dopplersonographie. Urban und Schwarzenberg, München/Wien/Baltimore, pp 19–53

    Google Scholar 

  • Gosling RG, King DH (1974) Continuous wave ultrasound as an alternative and complement to X-rays in vascular examination. In: Renemann RS (ed) Cardiovascular applications of ultrasound. North-Holland, Amsterdam, pp 266–286, Chapter 22

    Google Scholar 

  • Gosling RG, Dunbar G, King DH, Newman DL, Side CD, Woodcock JP, Fitzgerald DE, Keates JS, McMillan D (1971) The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive technique. Angiology 22:52–55

    Article  CAS  PubMed  Google Scholar 

  • Hoeks APG (1982) On the development of a multi-gate pulsed Doppler system with serial data-processing. Thesis, University of Limburg, Maastricht

    Google Scholar 

  • Keller HM, Meier WE, Anliker M, Kumpe DA (1976) Noninvasive measurement of velocity profiles and blood flow in the common carotid artery by pulsed Doppler ultrasound. Stroke 7:370–377

    Article  CAS  PubMed  Google Scholar 

  • Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235–2247

    Article  CAS  PubMed  Google Scholar 

  • Lunt MJ (1975) Accuracy and limitation of the ultrasonic Doppler blood velocimeter and zero-crossing detector. Ultrasound Med Biol 2:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mach E (1873) Beiträge zur Doppler’schen Theorie der Ton- und Farbenänderung durch Bewegung. Gesammelte Abhandlungen, Prag, p 13

    Google Scholar 

  • MacLeod FD (1967) A directional doppler flowmeter. Digest of the 7th international conference on medical electronics and biological engineering, Stockholm, p 213

    Google Scholar 

  • Marshall M (1984) Praktische Dopplersonographie. Springer, Berlin/Heidelberg/New York, pp 11–18

    Google Scholar 

  • Maulik D (2005) Spectral Doppler: basic principles and instrumentation. In: Doppler ultrasound in obstetrics and gynecology. Springer, Berlin/Heidelberg/NewYork, pp 20–24

    Chapter  Google Scholar 

  • McLeod FD (1974) Multichannel pulse Doppler techniques. In: Renemann RS (ed) Cardiovascular application of ultrasound. American Elsevier Publishing Co, New York, pp 85–107

    Google Scholar 

  • Mühlen zur J (1989) Dopplersonographie der peripheren Arterien und Venen. Promonta, Hamburg

    Google Scholar 

  • Namekawa K, Kasai C, Tsukamoto M, Koyano A (1982) Real-time bloodflow imaging system utilizing autocorrelation techniques. In: Lerski RA, Morley P (eds) Ultrasound’82. Pergamon, New York, pp 203–208

    Google Scholar 

  • Omoto R (1984) Principle and equipment. In: Color atlas of real time two-dimensional Doppler echocardiography. Shindan-to-Chiryo Co. Ltd, Tokyo, pp 5–12

    Google Scholar 

  • Planiol T, Pourcelot L (1973) Doppler effect study of the carotid circulation. In: de Vlieger M, White DN, McCready VR (eds) Ultrasonics in medicine, proceedings of the second world congress. American Elsevier, New York, pp 104–111

    Google Scholar 

  • Raine-Fenning NJ, Ramnarine KV, Nordin NM, Campbell BK (2004) Quantification of blood perfusion using 3D power Doppler: an in-vitro flow phantom study. In: Journal of physics: conference series 1, Institute of Physics Publishing, Nottingham, pp 181–186

    Google Scholar 

  • Riccabona M, Nelson TR, Weitzer C, Resch B, Pretorius DB (2003) Potential of three-dimensional ultrasound in neonatal and paediatric neurosonography. Eur Radiol 13:2082–2093

    Article  CAS  PubMed  Google Scholar 

  • Rubin JM, Bude RO, Carson PL, Bree RL, Adler RS (1994) Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology 190(3):853–856

    Article  CAS  PubMed  Google Scholar 

  • Satomura S (1959) Study of the blood flow pattern in peripheral arteries by ultrasound. J Accoust Soc Jpn 15:151–158

    Google Scholar 

  • Smith SW (2001) The scientist and engineer’s guide to digital signal processing. California Technical Publishing, San Diego, pp 39–44

    Google Scholar 

  • Strandness DE, Schultz RD, Sumner DS, Rushmer RF (1967) Ultrasonic flow detection – a useful technic in the evaluation of peripheral vascular disease. Am J Surg 113:311–320

    Article  PubMed  Google Scholar 

  • Wachsberg HR (2007) B-flow imaging of the hepatic vasculature: correlation with color doppler sonography. AJR Am J Roentgenol 188:W522–W533

    Article  PubMed  Google Scholar 

  • Warnking R, Teague MJ (1981) Nicht-invasive Bestimmung des fetalen Blutflussvolumens. Ultraschall Med 2:232–234

    Article  Google Scholar 

  • Weskott HP (2000) B-Flow – eine neue Methode der Blutflussdetektion. Ultraschall Med 21:59–65. Thieme; Stuttgart, New York

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Dudwiesus .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dudwiesus, H. (2015). Physical and Technical Principles of Doppler Sonography. In: Doppler Sonography in Infancy and Childhood. Springer, Cham. https://doi.org/10.1007/978-3-319-03506-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03506-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03505-5

  • Online ISBN: 978-3-319-03506-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics