Skip to main content

Isomer Shifts in Solid State Chemistry

  • Chapter
  • First Online:
The Rudolf Mössbauer Story

Abstract

The isomer shift of the Mössbauer resonance is a rather unique quantity that cannot be obtained by any of the other techniques used for measuring hyperfine interactions in solids, such as NMR or perturbed angular correlations (TDPAC). It shifts the resonance pattern as a whole without affecting the magnetic dipole and electric quadrupole hyperfine splittings. Methods that measure only these hyperfine splittings are insensitive to the isomer shift. The magnitude of the observed shift is proportional to the product of a nuclear parameter, the change Δ⟨r 2⟩ of the nuclear radius that goes along with the Mössbauer transition, and to an electronic property of the material, the electron density ρ(0) at the Mössbauer nucleus or, more precisely, to the difference Δρ(0) of the electron densities at the Mössbauer nuclei in the materials of which the source and the absorber are made. The electron density at the nucleus is due to s-electrons and, to a lesser extent and mainly in heavy nuclei, to relativistic p1 ∕ 2-electrons. All the other electrons have a vanishing density inside the nucleus and do not contribute. Thus, to a very good accuracy, the Mössbauer isomer shift enables one to obtain information on the s-electron density at the Mössbauer nuclei in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The energy, indeed, becomes bigger for 57Fe because the nucleus in this case is smaller in the excited state than in the groundstate.

  2. 2.

    Electron densities are often given in atomic units (a.u.). An atomic unit for the electron density is the number of electrons found within a volume of a 0 3, where a 0 = 0. 0529 nm is Bohr’s radius.

  3. 3.

    The rarer case of evaluating Δ⟨r 2⟩ in terms of nuclear models is described elsewhere in this volume [13].

  4. 4.

    The source matrix should be cubic and non-magnetic to yield a single line, and it should not show radiochemical effects of the nuclear decay, which is best guaranteed by a metallic matrix. For 57Fe Mössbauer spectroscopy, it has become customary to use metallic rhodium as the source matrix.

  5. 5.

    Details can be found on the Wien2k web site (www.wien2k.at).

References

  1. G.K. Shenoy, F.E. Wagner, (eds.), Mössbauer Isomer Shifts (North Holland, Amsterdam, 1978)

    Google Scholar 

  2. W. Potzel, Relativistic Phenomena Investigated by the MössbauerEffect, The Rudolf MössbauerStory

    Google Scholar 

  3. H. Kopfermann, Nuclear Moments (Academic Press, New York, 1958)

    Google Scholar 

  4. W. Pauli, R.E. Peierls, Phys. Z. 32, 670 (1931)

    Google Scholar 

  5. O.C. Kistner, A.W. Sunyar, Phys. Rev. Lett. 4, 412 (1960)

    Article  ADS  Google Scholar 

  6. A.C. Melissinos, S.P. Davis, Phys. Rev. 115, 130 (1959)

    Article  ADS  Google Scholar 

  7. A.J. Freeman, D.E. Ellis, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 111

    Google Scholar 

  8. L.R.Walker, G.K. Wertheim, V. Jaccarino, Phys. Rev. Lett. 6, 98 (1961)

    Article  ADS  Google Scholar 

  9. R.E. Watson, Technical Report No. 12, Massachusetts Institute of Technology, 1959

    Google Scholar 

  10. J. Danon, in Applications of the Mössbauer Effect in Chemistry and Solid State Physics, Technical Report No. 50 (International Atomic Energy Agency, Vienna, 1966), p. 89

    Google Scholar 

  11. G.M. Kalvius, G.K. Shenoy, Atomic Data and Nuclear Data Tables 14, 639 (1974)

    Article  ADS  Google Scholar 

  12. B.D. Dunlap, G.M. Kalvius, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 15

    Google Scholar 

  13. W.F. Henning, Nuclear Physics Application of the MössbauerEffect, The Rudolf MössbauerStory

    Google Scholar 

  14. D.A. Shirley, Rev. Mod. Phys. 36, 339 (1964)

    Article  ADS  Google Scholar 

  15. J.G. Stevens, W.L. Gettys, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 901

    Google Scholar 

  16. J. Speth, W. Henning, P. Kienle, J. Meyer, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 795

    Google Scholar 

  17. F.E. Wagner, M. Karger, M. Seiderer, G. Wortmann, in AIP Conference Proceedings, vol. 38, ed. by G.J. Perlow (American Institute of Physics, New York, 1977), p.93

    Chapter  Google Scholar 

  18. J.B. Mann, Los Alamos National Laboratory Scientific Report LA 3691 (1968)

    Google Scholar 

  19. J.B. Mann, J. Chem. Phys. 51, 841 (1969)

    Article  ADS  Google Scholar 

  20. G.K. Shenoy, B.D. Dunlap, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 869.

    Google Scholar 

  21. K.J. Duff, Phys. Rev. B 9, 66 (1974)

    Article  ADS  Google Scholar 

  22. R. Ingalls, F. Van der Woude, G.A. Sawatzky, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 361

    Google Scholar 

  23. D.P. Johnson, Phys. Rev. B1, 3551 (1970)

    ADS  Google Scholar 

  24. H.U. Freund, J.C. McGeorge, Z. Physik 238, 6 (1970)

    Article  ADS  Google Scholar 

  25. R. Rüegsegger, W. Kündig, Phys. Lett. 39B, 620 (1972)

    ADS  Google Scholar 

  26. E. Vatai, Nucl. Phys. A156, 541 (1970)

    ADS  Google Scholar 

  27. H. Hofmann-Reinecke, U. Zahn, H. Daniel, Phys. Lett. 47B, 494 (1973)

    ADS  Google Scholar 

  28. A. Meykens, R. Coussement, J. Ladrière, M. Cogneau, M. Bogé, P. Auric, R. Bouchez, A. Bernabel, J. Godard, Phys. Rev. B 21, 3816 (1980)

    Article  ADS  Google Scholar 

  29. M. Filatov, Coord. Chem. Rev. 253, 594 (2009)

    Article  Google Scholar 

  30. P. Gütlich, E. Bill, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications (Springer, Berlin, 2011)

    Book  Google Scholar 

  31. K. Schwarz, P. Blaha, G.K.H. Madsen, Comp. Phys. Commun. 147, 71 (2002)

    Article  ADS  MATH  Google Scholar 

  32. K. Schwarz, J. Solid State Chem. 176, 319 (2003)

    Article  ADS  Google Scholar 

  33. P. Blaha, J. Phys. Conf. Series 217, 012009 (2010)

    Article  ADS  Google Scholar 

  34. O. Eriksson, A. Svane, J. Phys. Cond. Matter 1, 1589 (1989)

    Article  ADS  Google Scholar 

  35. U.D. Wdowik, K. Ruebenbauer, Phys. Rev B 76, 155118 (2007)

    Google Scholar 

  36. A. Svane, N.E. Christensen, C.O. Rodriguez, M. Methfessel, Phys. Rev. B 55, 12572 (1997)

    Article  ADS  Google Scholar 

  37. R. Kurian, M. Filatov, J. Chem. Phys. 130, 124121 (2009)

    Article  ADS  Google Scholar 

  38. A. Svane, Phys. Rev. 68, 064422 (2003)

    Article  Google Scholar 

  39. U.D. Wdowik, D. Legut, K. Ruebenbauer, J. Chem. Phys. A 114, 7146 (2010)

    Article  Google Scholar 

  40. P. Palade, F.E. Wagner, G. Filoti, Hyperfine Interactions (C) 5, 195 (2002)

    Google Scholar 

  41. U.D. Wdowik, K. Ruebenbauer, J. Chem. Phys. 129, 104504 (2008)

    Article  ADS  Google Scholar 

  42. M. Filatov, J. Chem. Phys. 127, 084101 (2007)

    Article  ADS  Google Scholar 

  43. F. Neese, Inorg. Chim. Acta 337, 181 (2002)

    Article  Google Scholar 

  44. G.M. Kalvius, The World beyond Iron, The Rudolf MössbauerStory

    Google Scholar 

  45. F.E. Wagner, U. Wagner, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 431

    Google Scholar 

  46. H.D. Bartunik, G. Kaindl, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 515.

    Google Scholar 

  47. R.L. Cohen, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 541.

    Google Scholar 

  48. F.E. Wagner, G. Wortmann, G.M. Kalvius, Phys. Lett. 42A, 483 (1973)

    ADS  Google Scholar 

  49. G. Kaindl, D. Salomon, G. Wortmann, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 561

    Google Scholar 

  50. T.K. NcNab, H. Micklitz, P.H. Barrett, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 223

    Google Scholar 

  51. P. Gütlich, J. Garcia, J. Phys. Conf. Ser. 217, 012001 (2010)

    Article  ADS  Google Scholar 

  52. E. König, G. Ritter, S.K. Kulshreshtha, Chem. Rev. 85, 219 (1985)

    Article  Google Scholar 

  53. M. Sorai, J. Ensling, K.M. Hasselbach, P. Gütlich, Chem. Phys. 20, 197 (1977)

    Article  Google Scholar 

  54. H. Prosser, F.E. Wagner, G. Wortmann, G.M. Kalvius, Hyperfine Interactions 1, 25 (1975)

    Article  ADS  Google Scholar 

  55. S.L. Ruby, G.K. Shenoy, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 617

    Google Scholar 

  56. P.A. Flinn, in Mössbauer Isomer Shifts, ed. by G.K. Shenoy, F.E. Wagner (North Holland, Amsterdam, 1978), p. 593

    Google Scholar 

  57. J. Wang, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc. 133, 457 (1986)

    Article  Google Scholar 

  58. C.J. Wen, R.A. Huggins, J. Electrochem. Soc. 128, 1181 (1981)

    Article  Google Scholar 

  59. S. Machill, T. Shodai, Y. Sakurai, J.-I. Yamaki, J. Power Sources 73, 216 (1998)

    Article  Google Scholar 

  60. Z. Chen, Y. Cao, J. Qian, X. Ai, H. Yang, J. Mater. Chem. 20, 7266 (2010)

    Article  Google Scholar 

  61. A. Aboulaich, M. Womes, J. Olivier-Fourcade, P. Willmann, J.-C. Jumas, Solid State Sci. 12, 65 (2010)

    Article  ADS  Google Scholar 

  62. X.-L. Wang, W.-Q. Han, J. Chen, J. Graetz, ACS Appl. Mater. Interfaces 2, 1548 (2010)

    Article  Google Scholar 

  63. R.A. Dunlap, D.A. Small, D.D. MacNeil, M.N. Obravac, J.R. Dahn, J. Alloys Comp. 289, 135 (1999)

    Article  Google Scholar 

  64. F. Robert, P.-E. Lippens, J. Olivier-Fourcade, J.-C. Jumas, F. Gillot, M. Morcrette, J.-M. Tarascon, J. Solid State Chem. 180, 339 (2007)

    Article  ADS  Google Scholar 

  65. A. Aboulaich, F. Robert, P.-E. Lippens, L. Aldon, J. Olivier-Fourcade, P. Willmann, J.-C. Jumas, Hyperfine Interactions 167, 733 (2006)

    Article  ADS  Google Scholar 

  66. J.-C. Jumas, M. Womes, L. Aldon, P.-E. Lippens, J. Olivier-Fourcade, Mössbauer Effect Data Reference J. 33, 46 (2010)

    Google Scholar 

  67. S. Naille, J.-C. Jumas, P.-E. Lippens, J. Olivier-Fourcade. J. Power Sources 189, 814 (2009)

    Article  Google Scholar 

  68. P.E. Lippens, J.-C. Jumas, J. Olivier-Fourcade, Hyperfine Interactions 156/157, 327 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, F.E., Stievano, L. (2012). Isomer Shifts in Solid State Chemistry. In: Kalvius, M., Kienle, P. (eds) The Rudolf Mössbauer Story. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17952-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17952-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17951-8

  • Online ISBN: 978-3-642-17952-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics