Skip to main content

Abstract

At present, optical measurement methods are the most powerful tools for basic and applied research and inspection of the characteristic properties of a variety of materials, especially following the development of lasers and computers. Optical measurement methods are widely used for optical spectroscopy including linear and nonlinear optics and magneto-optics, conventional and unconventional optical microscopy, fiber optics for passive and active devices, optical recording for CD/DVD and MO disks, and various kinds of optical sensing.

In this chapter, as an introduction to the following sections, the concept and fundamentals of optical spectroscopy are described in Sect. 11.1, including optical measurement tools such as light sources, detectors and spectrometers, and standard optical measurement methods such as reflection, absorption, luminescence, scattering, etc. A short summary of laser instruments is also included. In Sect. 11.2 the microspectroscopic methods that have recently become quite useful for nano-science and nano-technology are described, including single-dot/molecule spectroscopy, near-field optical spectroscopy and cathodo-luminescence spectroscopy using scanning electron microscopes. In Sect. 11.3 magneto-optics such as Faraday rotation is introduced and the superlattice of semi-magnetic semiconductors is applied for the imaging measurement of magnetic flux patters of superconductors as an example of spintronics. Section 11.4 is devoted to fascinating subjects in laser spectroscopy, such as nonlinear spectroscopy, time-resolved spectroscopy and THz spectroscopy. In Sect. 11.5 fiber optics is summarized, including transmission properties, nonlinear optical properties, fiber gratings, photonic crystal fibers, etc. In Sect. 11.6 optical recording technology for high-density storage is described in detail, including the measurement methods for the characteristic properties of phase-change and magneto-optical materials. Finally, in Sect. 11.7 a variety of optical sensing methods are described, including the measurement of distance, displacement, three-dimensional shape, flow, temperature and, finally, the human body for bioscience and biotechnology.

This chapter begins with a section on basic technology for optical measurements. Sections 11.211.4 deal with advanced technology for optical measurements. Finally Sects. 11.511.7 discuss practical applications to photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AES:

Auger electron spectroscopy

AFM:

atomic force microscope

AFM:

atomic force microscopy

APD:

avalanche photodiodes

ASE:

amplified spontaneous emission

BCS:

Bardeen–Cooper–Schrieffer

BER:

bit error rate

CARS:

coherent anti-Stokes Raman spectroscopy

CCD:

charge-coupled device

CD:

circular dichroism

CFD:

computational fluid dynamics

CL:

cathodoluminescence

CW:

continuous wave

DC:

direct current

DFG:

difference frequency generation

DMS:

diluted magnetic semiconductor

DSC:

differential scanning calorimeter

DTA:

differential thermal analysis

DWDD:

domain-wall displacement detection

DWDM:

dense wavelength-division multiplexed

ED:

electron diffraction

EDFA:

Er-doped fiber amplifier

EL:

electroluminescence

EPMA:

electron probe microanalysis

FBG:

fiber Bragg grating

FLN:

fluorescence line narrowing

FTS:

Fourier-transform spectrometer

FWM:

four-wave mixing

GDD:

group delay dispersion

GVD:

group velocity dispersion

HGW:

hollow grass waveguide

HMFG:

heavy-metal fluoride glass fiber

ICP:

inductively coupled plasma

IR:

infrared

KLM:

Kerr-lens mode-locking

LC:

liquid chromatography

LC:

liquid crystal

LD:

Lawrence–Doniach

LD:

laser device

LD:

laser diode

LDV:

laser Doppler velocimeter

LED:

light-emitting diode

LIF:

laser-induced fluorescence

MCA:

multichannel analyzer

MCP:

microchannel plate

MD:

molecular dynamics

MFD:

mode field diameter

MFM:

magnetoforce micrometer

MO:

magnetooptical

MOL:

magnetooptical layer

MON:

monochromator

MOS:

metal–oxide–semiconductor

NA:

numerical aperture

ND:

neutron diffraction

NEP:

noise-equivalent power

OCT:

optical coherence tomography

OKE:

optical Kerr effect

OPA:

optical parametric amplifier

OPG:

optical parametric generation

OPO:

optical parametric oscillator

OR:

optical rectification

OTDR:

optical time-domain reflectometry

PBG:

photonic band gap

PC:

personal computer

PC:

photoconductive detector

PC:

polycarbonate

PCF:

photonic crystal fiber

PEM:

photoelectromagnetic

PL:

photoluminescence

PLE:

PL excitation

PMMA:

poly(methyl methacrylate)

PMT:

photomultiplier tube

POL:

polychromator

PT:

phototube

PV:

photovoltaic

PVA:

polyvinyl acetate

QE:

quantum effect

RBS:

Rutherford backscattering

RE:

reference electrode

RH:

relative humidity

SBR:

styrene butyl rubber

SBS:

sick-building syndrome

SD:

strength difference

SEM:

scanning electron microscopy

SFG:

sum frequency generation

SHG:

second-harmonic generation

SIMS:

secondary ion mass spectrometry

SMSC:

study semiconductor

SNOM:

scanning near-field optical microscopy

SNR:

signal-to-noise ratio

SPM:

scanning probe microscopy

SPM:

self-phase modulation

SPOM:

surface potential microscope

SRS:

stimulated Raman scattering

TAC:

time-to-amplitude converter

TCSPC:

time-correlated single-photon counting

TDS:

thermal desorption mass spectrometry

TDS:

total dissolved solid

TEM:

transmission electron microscopy

THG:

third-harmonic generation

TPA:

two-photon absorption

UV:

ultraviolet

VCSEL:

vertical-cavity surface-emitting laser

VSM:

vibrating-sample magnetometer

WDM:

wavelength division multiplexing

XMA:

x-ray micro analyzer

XPS:

x-ray photoelectron spectroscopy

XPS:

x-ray photoemission spectroscopy

XRD:

x-ray diffraction

YAG:

yttrium aluminum garnet

YIG:

yttrium-iron garnet

References

  1. A.P. Thone: Spectrophysics, 2nd edn. (Chapman Hall, New York 1988)

    Book  Google Scholar 

  2. J.D. Ingle Jr., S.R. Crouch: Spectrochemical Analysis (Prentice Hall, Piscataway 1988)

    Google Scholar 

  3. H.H. Willard, L.L. Merritt Jr., J.A. Dean, F.A. Settle Jr.: Instrumental Methods of Analysis, 7th edn. (Wadsworth Publishing, Belmont 1988)

    Google Scholar 

  4. G.W. Ewing: Instrumental Methods of Chemical Analysis, 4th edn. (McGraw-Hill, Tokyo 1975)

    Google Scholar 

  5. T. Iwata, T. Tanaka, T. Araki, T. Uchida: Externally-controlled nanosecond Xe discharge lamp equipped with a synchronous high-voltage power supply using an automobile ignition coil, Rev. Sci. Instrum. 73(9), 3165–3169 (2002)

    Article  Google Scholar 

  6. T. Iwata, T. Tanaka, T. Komatsu, T. Araki: An externally-controlled nanosecond-pulsed, Xe lamp using a high voltage semiconductor switch, Rev. Sci. Instrum. 71, 4045–4049 (2000)

    Article  Google Scholar 

  7. E. Miyazaki, S. Itami, T. Araki: Using a light-emitting diode as a high-speed, wavelength selective photodetector, Rev. Sci. Instrum. 69, 3751–3754 (1998)

    Article  Google Scholar 

  8. T. Araki, H. Misawa: LED-based nanosecond UV-light source for fluorescence lifetime measurements, Rev. Sci. Instrum. 66, 5469–5472 (1995)

    Article  Google Scholar 

  9. T. Araki, Y. Fujisawa, M. Hashimoto: An ultraviolet nanosecond light pulse generator using a light emitting diode for test of photodetector, Rev. Sci. Instrum. 68, 1365–1368 (1997)

    Article  Google Scholar 

  10. T. Iwata: Proposal for Fourier-transform phase-modulation fluorometer, Opt. Rev. 10(1), 31–37 (2003)

    Article  Google Scholar 

  11. T. Iwata, T. Takasu, T. Miyata, T. Araki: Combination of a gated photomultiplier tube and a phase sensitive detector for use in an intensive pulsed background situation, Opt. Rev. 9, 18–24 (2002)

    Article  Google Scholar 

  12. T. Iwata, T. Takasu, T. Araki: Simple photomultiplier-tube internal-gating method for use in subnanosecond time-resolved spectroscopy, Appl. Spectrosc. 57, 1145–1150 (2003)

    Article  Google Scholar 

  13. T. Miyata, T. Araki, T. Iwata: Correction of the intensity-dependent phase delay in a silicon avalanche photodiode by controlling its reverse bias voltage, IEEE J. Quantum Electron. QE-39, 919–923 (2003)

    Article  Google Scholar 

  14. T. Miyata, T. Iwata, T. Araki: Construction of a pseudo-lock-in light detection system using a gain-enhanced gated silicon avalanche photodiode, Meas. Sci. Technol. 16, 2453–2458 (2005)

    Article  Google Scholar 

  15. P. Griffiths, J.A. de Haseth: Fourier Transform Infrared Spectrometry (Wiley, New York 1986)

    Google Scholar 

  16. J.M. Chalmers, P.R. Griffiths (Ed.): Handbook of Vibrational Spectroscopy, Vol. 1 (Wiley, New York 2002)

    Google Scholar 

  17. M. Dressel, G. Grüner: Electrodynamics of Solids (Cambridge Univ. Press, Cambridge 2002)

    Book  Google Scholar 

  18. M. Born, E. Wolf: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  19. R.M.A. Azzama, N.M. Bashara: Ellipsometry and Polarized Light (North-Holland, Amsterdam 1977)

    Google Scholar 

  20. S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, S. Tajima: Optical spectra of La_2-xSr_xCuO_4: Effect of carrier doping on the electronic structure of the CuO_2 plane, Phys. Rev. B 43, 7942–7954 (1991)

    Article  Google Scholar 

  21. Y. Toyozawa: Optical Processes in Solids (Cambridge Univ. Press, Cambridge 2003)

    Book  Google Scholar 

  22. M. Ashida, Y. Kawaguchi, R. Kato: Phonon sidebands of ν00 line in absorption and luminescence spectra of NaNO_2: Spatial dispersion of ν00 exciton, J. Phys. Soc. Jpn. 58, 4620–4625 (1989)

    Article  Google Scholar 

  23. Y. Kondo, T. Noto, S. Sato, M. Hirai, A. Nakamura: Hot luminescence and non-radiative transition of F centers in KCl and NaCl crystals, J. Lumin. 38, 164–167 (1987)

    Article  Google Scholar 

  24. I. Akimoto, M. Ashida, K. Kanʼno: Luminescence from C_60 single crystals in glassy phase under site-selective excitation, Chem. Phys. Lett. 292, 561–566 (1999)

    Article  Google Scholar 

  25. M. Cardona, G. Güntherrodt (Eds.): Light Scattering in Solids I–VIII (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  26. W. Hayes, R. Loudon: Scattering of Light by Crystals (Wiley, New York 1987)

    Google Scholar 

  27. E. Saitoh, S. Okamoto, K.T. Takahashi, K. Tobe, K. Yamamoto, T. Kimura, S. Ishihara, S. Maekawa, Y. Tokura: Observation of orbital waves as elementary excitations in a solid, Nature 410, 180–183 (2001)

    Article  Google Scholar 

  28. A. Kato, M. Ashida, R. Kato: Temperature dependence of resonant secondary emission in NaNO_2 crystals, J. Lumin. 66/67, 264–267 (1996)

    Article  Google Scholar 

  29. B.P. Zhang, T. Yasuda, W.X. Wang, Y. Segawa, K. Edamatsu, T. Itoh, H. Yaguchi, K. Onabe: A new approach to ZnCdSe quantum dots, Mater. Sci. Eng. B 51, 127–131 (1998)

    Article  Google Scholar 

  30. A.M. van Oijen, M. Ketelaars, J. Koehler, T.J. Aartsma, J. Schmidt: Unraveling the electronic structure of individual photosynthetic pigment-protein complexes, Science 285, 400–402 (1999)

    Article  Google Scholar 

  31. T. Fujimura, K. Edamatsu, T. Itoh, R. Shimada, A. Imada, T. Koda, N. Chiba, H. Muramatsu, T. Ataka: Scanning near-field optical images of ordered polystyrene particle layers in transmission and luminescence excitation modes, Opt. Lett. 22, 489–491 (1997)

    Article  Google Scholar 

  32. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara: Near-field optical mapping of exciton wave functions in a GaAs quantum dot, Phys. Rev. 91, 177401 (2003)

    Google Scholar 

  33. H.C. Ong, A.S.K. Li, G.T. Du: Depth profiling of ZnO thin films by cathodoluminescence, Appl. Phys. Lett. 78, 2667–2669 (2001)

    Article  Google Scholar 

  34. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys. 79, 7983–7990 (1996)

    Article  Google Scholar 

  35. D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto: Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70, 2230–2232 (1997)

    Article  Google Scholar 

  36. K. Shinagawa: Faraday and Kerr effects in ferromagnets. In: Magneto-Optics, Vol. 128, ed. by S. Sugano, N. Kojima (Springer, Berlin, Heidelberg 2000) p. 137

    Chapter  Google Scholar 

  37. M. Faraday: On the magnetization of light and the illumination of magnetic lines of force, Philos. Trans. R. Soc. 136, 104–123 (1846)

    Google Scholar 

  38. J. Kerr: On rotation of the plane of polarization by reflection from the pole of a magnet, Philos. Mag. 3, 321 (1877)

    Article  Google Scholar 

  39. C. Gourdon, G. Lazard, V. Jeudy, C. Testelin, E.L. Ivchenko, G. Karczewski: Enhanced Faraday rotation in CdMnTe quantum wells embedded in an optical cavity, Solid State Commun. 123, 299–304 (2002)

    Article  Google Scholar 

  40. C. Gourdon, V. Jeudy, M. Menant, A.T. Le, E.L. Ivchenko, G. Karczewski: Magneto-optical imaging with diluted magnetic semiconductor quantum wells, Appl. Phys. Lett. 82, 230–232 (2003)

    Article  Google Scholar 

  41. M.R. Koblischka, R.J. Wijngaarden: Magneto-optical investigations of superconductors, Superconduct. Sci. Technol. 8, 199–213 (1995)

    Article  Google Scholar 

  42. P.E. Goa, H. Hauglin, M. Baziljevich, E. Ilʼyashenko, P.L. Gammel, T.H. Johansen: Real-time magneto-optical imaging of vortices in superconducting NbSe_2, Superconduct. Sci. Technol. 14, 729–731 (2001)

    Article  Google Scholar 

  43. M.A. Butler, S.J. Martin, R.J. Baughman: Frequency-dependent Faraday rotation in CdMnTe, Appl. Phys. Lett. 49, 1053–1055 (1986)

    Article  Google Scholar 

  44. D. Scalbert, J. Cernogora, C. Benoit à la Guillaume: Spin-lattice relaxation in paramagnetic CdMnTe, Solid State Commun. 66, 571–574 (1988)

    Article  Google Scholar 

  45. V. Jeudy, C. Gourdon, T. Okada: Impeded growth of magnetic flux bubbles in the intermediate state pattern of type I superconductors, Phys. Rev. Lett. 92, 147001 (2004)

    Article  Google Scholar 

  46. A. Cebers, C. Gourdon, V. Jeudy, T. Okada: Normal-state bubbles and lamellae in type-I superconductors, Phys. Rev. B 72, 014513 (2005)

    Article  Google Scholar 

  47. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  48. S.V. Popov, P.Y. Svirko, N.I. Zheludev: Susceptibility Tensors for Nonlinear Optics (Inst. Physics, London 1995)

    Google Scholar 

  49. D.L. Mills: Nonlinear Optics Basic Concepts (Springer, Berlin, Heidelberg 1998)

    Book  Google Scholar 

  50. H. Kishida, M. Ono, K. Miura, H. Okamoto, M. Izumi, T. Manako, M. Kawasaki, Y. Taguchi, Y. Tokura, T. Tohyama, K. Tsutsui, S. Maekawa: Large third-order optical nonlinearity of Cu-O chains investigated by third-harmonic generation spectroscopy, Phys. Rev. Lett. 87(4), 177401 (2001)

    Article  Google Scholar 

  51. C. Rulliere (Ed.): Femtosecond Laser Pulses (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  52. M. Ashida, R. Kato: Resonant emission under excitation of isotopic level in NaNO_2, J. Phys. Soc. Jpn. 63, 2808–2817 (1993)

    Article  Google Scholar 

  53. A. Kato, M. Ashida, R. Kato: Time-resolved study of exciton thermalization in NaNO_2, J. Phys. Soc. Jpn. 66, 2886–2892 (1997)

    Article  Google Scholar 

  54. M. Ashida, H. Arai, O. Morikawa, R. Kato: Luminescence and superfluorescence-like emission from a thin layer of O_2- centers in KBr crystal, J. Lumin. 72–74, 624–625 (1997)

    Article  Google Scholar 

  55. M. Kuwata, T. Kuga, H. Akiyama, T. Hirano, M. Matsuoka: Pulsed propagation of polariton luminescence, Phys. Rev. Lett. 61, 1226–1228 (1988)

    Article  Google Scholar 

  56. S. Kinoshita, H. Ozawa, Y. Kanematsu, I. Tanaka, N. Sugimoto, S. Fujiwara: Efficient optical Kerr shutter for femtosecond time-resolved luminescence spectroscopy, Rev. Sci. Instrum. 71, 3317–3322 (2000)

    Article  Google Scholar 

  57. T. Matsuoka, S. Saito, J. Takeda, S. Kurita, T. Suemoto: Overtone modulation and anti-phasing behavior of wave-packet amplitudes on the adiabatic potential surface of self-trapped excitons, Nonlinear Opt. 29, 587–593 (2002)

    Article  Google Scholar 

  58. M. Ashida, T. Ogasawara, N. Motoyama, H. Eisaki, S. Uchida, Y. Taguchi, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, M. Kuwata-Gonokami: Interband two-photon transition in Mott insulator as a new mechanism for ultrafast optical nonlinearity, Int. J. Mod. Phys. B 15, 3628–3632 (2001)

    Article  Google Scholar 

  59. M. Ashida, T. Ogasawara, Y. Tokura, S. Uchida, S. Mazumdar, M. Kuwata-Gonokami: One-dimensional cuprate as a nonlinear optical material for ultrafast all-optical switching, Appl. Phys. Lett. 78, 2831–2833 (2001)

    Article  Google Scholar 

  60. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland: Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. QE-26, 760–769 (1990)

    Article  Google Scholar 

  61. N. Peyghambarian, S.W. Koch, A. Mysyriwicz: Introduction to Semiconductor Optics (Prentice Hall, Piscataway 1993)

    Google Scholar 

  62. B. Ferguson, X.C. Zhang: Materials for terahertz science and technology, Nat. Mater. 1, 26–33 (2002)

    Article  Google Scholar 

  63. K. Sakai (Ed.): Teraherz Optoelectronics (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  64. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, A. Leitenstorfer: How many-particle interactions develop after ultrafast excitation of an electron-hole plasma, Nature 414, 286–289 (2001)

    Article  Google Scholar 

  65. M. Ashida: Ultra-broadband terahertz wave detection using photoconductive antenna, Jpn. J. Appl. Phys. 47, 8221–8225 (2008)

    Article  Google Scholar 

  66. C. Kübler, R. Huber, S. Tübel, A. Leitenstorfer: Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared, Appl. Phys. Lett. 85, 3360–3362 (2004)

    Article  Google Scholar 

  67. K. Kawase: Terahertz imaging for drug detection and large-scale integrated circuit inspection, Opt. Photon. News 15, 34–39 (2004)

    Article  Google Scholar 

  68. J.A. Buck: Fundamentals of Optical Fibers (Wiley, New York 1995), Chap. 3

    Google Scholar 

  69. T. Li (Ed.): Optical Fiber Communications: Fiber Fabrication, Vol. 1 (Academic, San Diego 1985)

    Google Scholar 

  70. TIA-455-78: Spectral Attenuation Cutback Measurement for Single Mode Optical Fibers (Electronic Industries Association, Washington 2002)

    Google Scholar 

  71. TIA/EIA-455-50: Light Launch Conditions for Long-Length, Graded-Index Optical Fiber Spectral Attenuation measurements, Procedure B (Electronic Industries Association, Washington 2001)

    Google Scholar 

  72. I.H. Maliston: Interspecimen comparison of the refractive index of fused silica, J. Opt. Soc. Am. 55, 1205–1209 (1965)

    Article  Google Scholar 

  73. M.J. Adams: An Introduction to Optical Waveguides (Wiley, New York 1981), Chap. 7

    Google Scholar 

  74. B.J. Ainslie, C.R. Day: A review of single-mode fibers with modified dispersion characteristics, J. Lightwave Technol. 4, 967–979 (1986)

    Article  Google Scholar 

  75. L.G. Cohen, C. Lin: Pulse delay measurements in the zero material dispersion wavelength region for optical fibers, Appl. Opt. 16, 3136–3139 (1977)

    Article  Google Scholar 

  76. B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni: Phase shift technique for the measurement of chromatic dispersion in optical fibers using LEDs, IEEE J. Quantum Electron. QE-18, 1509–1515 (1982)

    Article  Google Scholar 

  77. M. Takeda, N. Shibata, S. Seikai: Interferometic method for chromatic dispersion measurement in a single-mode optical fiber, IEEE J. Quantum Electron. QE-17, 404–407 (1981)

    Google Scholar 

  78. D. Milam, M.J. Weber: Measurement of nonlinear refractive-index coefficients using time-resolved interferometry: Application to optical materials for high-power neodymium lasers, J. Appl. Phys. 47, 2497–2501 (1976)

    Article  Google Scholar 

  79. A. Fellegara, M. Artiglia, S.B. Andreasen, A. Melloni, F.P. Espunes, M. Martinelli: COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at λ =1550  nm, Electron. Lett. 33, 1168–1170 (1997)

    Article  Google Scholar 

  80. G.P. Agrawal: Nonlinear Fiber Optics (Academic, New York 1989)

    Google Scholar 

  81. M.E. Fermann, A. Galvanauskas, G. Sucha, D. Harter: Fiber-lasers for ultrafast optics, Appl. Phys. B 65, 259–275 (1997)

    Article  Google Scholar 

  82. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, E.P. Ippen: Ultrashort-pulse fiber ring lasers, Appl. Phys. B 65, 277–294 (1997)

    Article  Google Scholar 

  83. J.K. Ranka, R.S. Windeler, A.J. Stentz: Visible continuum generation in air–silica microstructure optical fibers with anormalous dispersion at 800 nm, Opt. Lett. 25, 25–27 (2000)

    Article  Google Scholar 

  84. D. Marcuse, A.R. Chraplyvy, R.W. Tkach: Effect of fiber on long distance transmission, IEEE J. Lightwave Technol. 9, 121–128 (1991)

    Article  Google Scholar 

  85. R.H. Stolen: Nonlinearity in fiber transmission, Proc. IEEE 68, 1232–1236 (1980)

    Article  Google Scholar 

  86. R.G. Smith: Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Appl. Opt. 11, 2489–2494 (1972)

    Article  Google Scholar 

  87. Y. Namihara, M. Miyata, N. Tanahashi: Nonlinear coefficient measurements for dispersion shifted fibres using self-phase modulation method at 1.55 μ m, Electron. Lett. 30, 1171–1172 (1994)

    Article  Google Scholar 

  88. A. Boskovic, S.V. Chernikov, J.R. Taylor, L. Gruner-Nielsen, O.A. Levring: Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μ m, Opt. Lett. 21, 1966–1968 (1996)

    Article  Google Scholar 

  89. R.H. Stolen, C. Lin: Self-phase-modulation in silica fibers, Phys. Rev. 17, 1448–1454 (1978)

    Article  Google Scholar 

  90. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, M. Nishimura: Measurement of the nonlinear refractive index in optical fiber by the cross-phase-modulation method with depolarized pump light, Opt. Lett. 20, 988–990 (1995)

    Article  Google Scholar 

  91. L. Prigent, J.P. Hamaide: Measurement of fiber nonlinear Kerr coefficient by four-wave mixing, IEEE Photon. Technol. Lett. 5, 1092–1095 (1993)

    Article  Google Scholar 

  92. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication, Appl. Phys. Lett. 32, 647–649 (1978)

    Article  Google Scholar 

  93. K.O. Hills, B. Malo, F. Bilodeau, D.C. Johnson: Photosensitivity in optical fibers, Annu. Rev. Mater. Sci. 23, 125–157 (1993)

    Article  Google Scholar 

  94. I. Bennion, J.A.R. Williams, L. Zhang, K. Sugden, N. Doran: Tutorial review, UV-written in-fibre Bragg gratings, Opt. Quantum Electron. 28, 93–135 (1996)

    Article  Google Scholar 

  95. M. Bass, E.W. Van Stryland: Fiber Optics Handbook, Fiber, Devices and Systems for Optical Communications (McGraw-Hill, New York 2002), Chap. 9

    Google Scholar 

  96. P.J. Lemaire, R.M. Adkins, V. Mizrahi, W.A. Reed: High pressure H_2 loadening as a technique for achieving ultrahigh UV photosensitivity in GeO_2 doped optical fibers, Electron. Lett. 29, 1191–1193 (1993)

    Article  Google Scholar 

  97. F. Bilodeau, B. Malo, J. Albert, D.C. Johnson, K.O. Hill, Y. Hibino, M. Abe, M. Kawachi: Photosensitization of optical fiber and silica-on-silicon/silica waveguides, Opt. Lett. 18, 953–955 (1993)

    Article  Google Scholar 

  98. G. Meltz, W.W. Morey, W.H. Glenn: Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett. 14, 823–825 (1989)

    Article  Google Scholar 

  99. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, J. Albert: Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett. 62, 1035–1037 (1993)

    Article  Google Scholar 

  100. K.O. Hill, B. Malo, K.A. Vineberg, F. Bilodeau, D.C. Johnson, I. Skinner: Efficient mode conversion in telecommunication fiber using externally written gratings, Electron. Lett. 26, 1270–1272 (1990)

    Article  Google Scholar 

  101. B. Malo, S. Theriault, D.C. Johnson, F. Bilodeau, J. Albert, K.O. Hill: Apodised in-fibre Bragg grating reflectors photoimprinted using a phase mask, Electron. Lett. 31, 223–225 (1995)

    Article  Google Scholar 

  102. K.O. Hill, G. Metz: Fiber Bragg grating technology fundamentals and overview, J. Lightwave Technol. 15, 1263–1276 (1997)

    Article  Google Scholar 

  103. A.M. Vengsarkar, P.J. Remaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe: Long-period fiber gratings as a band-rejection filters, J. Lightwave Technol. 14, 58–65 (1996)

    Article  Google Scholar 

  104. A.M. Vengsarkar, J.R. Pedrazzani, J.B. Judkins, P.J. Lemaire, N.S. Bergano, C.R. Davidson: Long-period fiber-grating-based gain equalizers, Opt. Lett. 21, 336–338 (1996)

    Article  Google Scholar 

  105. M. Bass, E.W. Van Stryland: Fiber Optics Handbook, Fiber, Devices, and Systems for Optical Communications (McGraw-Hill, New York 2002), Chap. 15

    Google Scholar 

  106. E. Desurvire: Erbium-Doped Fiber Amplifiers, Principles and Applications (Wiley-Interscience, New York 1994) p. 238

    Google Scholar 

  107. S. Sudo: Outline of optical fiber amplifiers. In: Optical Fiber Amplifiers: Materials, Devices, and Applications, ed. by S. Sudo (Artech House, Boston 1997) pp. 81–83

    Google Scholar 

  108. W.J. Miniscalco: Erbium-doped glasses for fiber amplifiers at 1500 nm, IEEE J. Lightwave Technol. 9, 234–250 (1991)

    Article  Google Scholar 

  109. T.J. Whitley, R. Wyatt, D. Szebesta, S. Davey, J.R. Williams: Quarter-Watt output at 1.3 μ m from a praseodymium-doped fluoride fiber amplifier pumped with a diode-pumped Nd:YLF laser, IEEE Photon. Technol. Lett. 5, 399–401 (1993)

    Article  Google Scholar 

  110. T.J. Whitley: A review of recent system demonstrations incorporating 1.3 μ m praseodymium-doped fluoride fibre amplifiers, IEEE J. Lightwave Technol. 13, 744–760 (1995)

    Article  Google Scholar 

  111. P.C. Becker, N.A. Olsson, J.R. Simpson, A.A. Olsson: Erbium-Doped Fiber Amplifiers, Fundamentals and Technology (Academic, San Diego 1999) pp. 139–140

    Google Scholar 

  112. E. Desurvire: Erbium doped Fiber Amplifiers, Principles and Applications (Wiley-Interscience, New York 1994) pp. 339–340

    Google Scholar 

  113. H.A. Haus: The noise figure of amplifiers, IEEE Photon. Technol. Lett. 10, 1602–1606 (1998)

    Article  Google Scholar 

  114. M. Bass, E.W. Van Stryland: Fiber Optics Handbook (McGraw-Hill, New York 2002), Chap. 5

    Google Scholar 

  115. S.T. Davey, P.W. France: Rare-earth-doped fluoro-zirconate glass for fiber devices, Br. Telecom Technol. J. 7, 58 (1989)

    Google Scholar 

  116. F. Roy, D. Bayart, A. Le Sauze, P. Baniel: Noise and gain band management of thulium doped fiber amplifier with dual-wavelength pumping schemes, Photon. Technol. Lett. 13, 788–790 (2001)

    Article  Google Scholar 

  117. T. Karamatsu, Y. Yano, T. Ono: Laser-diode pumping (1.4 and 1.56 μ m) of gain-shifted thulium-doped fiber amplifier, Electron. Lett. 36, 1607–1609 (2000)

    Article  Google Scholar 

  118. R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perrin, S.T. Davey, M. Louka: A 1.6 μ m pumped 1.9 μ m thulium-doped fluoride fiber laser and amplifier of very high efficiency, IEEE J. Quantum Electron. QE-31, 498–493 (1995)

    Google Scholar 

  119. S. Sudo: Progress in Optical Fiber Amplifiers. In: Current Trends in Optical Amplifiers and their Applications, ed. by P.T. Lee (World Scientific, Teaneck 1996) pp. 19–21

    Google Scholar 

  120. S. Namiki, Y. Emori: Ultra-broadband Raman amplifiers pumped and gain equalized by wavelength-division-multiplexed high-power diode, IEEE J. Sel. Quantum Electron. 7, 3–16 (2001)

    Article  Google Scholar 

  121. I.N. Duling: All-fiber ring soliton laser mode locked with a non-linear mirror, Opt. Lett. 16, 539–541 (1991)

    Article  Google Scholar 

  122. M.E. Fermann: Nonlinear polarization evolution in passively modelocked fiber laser. In: Compact Ultrafast Pulse Sources, ed. by I.N. Duling (Cambridge Univ. Press, Cambridge 1995)

    Google Scholar 

  123. M.E. Fermann, A. Galvanauskas, G. Sucha: Ultrafast Lasers: Technology and Applications (Marcel Dekker, New York 2003)

    Google Scholar 

  124. D.J. DiGiovanni, A.J. Stentz: Tapered fiber bundles for coupling light into and out of cladding-pumped fiber lasers, US Patent 5864644 (1999)

    Google Scholar 

  125. L. Goldberg, P. Koplow, D.A.V. Kliner: Highly efficient4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode, Opt. Lett. 24, 673–675 (1999)

    Article  Google Scholar 

  126. V.P. Gapontsev, I. Samartsev: Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length, US Patent 5999673 (1999)

    Google Scholar 

  127. N.S. Platonov, V.P. Gapontsev, O. Shkurihin, I. Zaitsev: 400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery, Conf. Lasers Electro-Opt. (Optical Society of America, Washington 2003), postdeadline paper CThPDB9

    Google Scholar 

  128. V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker: 110 W fibre laser, Electron. Lett. 35, 1158–1160 (1999)

    Article  Google Scholar 

  129. J. Nilsson, J.K. Sahu, W.A. Clarkson, R. Selvas: High power fiber lasers: New developments, Proc. SPIE 4974, 50–59 (2003)

    Article  Google Scholar 

  130. E.W. Van Stryland, M. Bass: Fiber Optics Handbook (McGraw-Hill, New York 2002), Chap. 14

    Google Scholar 

  131. S.F. Carter, M.W. Moore, D. Szebesta, D. Ransom, P. France: Low loss fluoride fibre by reduced pressure casting, Electron. Lett. 26, 2115–2117 (1990)

    Article  Google Scholar 

  132. P.W. France, S.F. Carter, M.W. Moore, C.R. Day: Progress on fluoride fibres for optical communications, Br. Telecom Technol. J. 5, 28–44 (1987)

    Google Scholar 

  133. S. Kobayashi, N. Shibata, S. Shibata, T. Izawa: Characteristics of optical fibers in infrared wavelength region, Electr. Commun. Lab. Rev. 26, 453–467 (1978)

    Google Scholar 

  134. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, T. Yamagishi: Recent advances and trends in chalcogenide glass fiber technology, A review, J. Non-Cryst. Solids 140, 199–208 (1992)

    Article  Google Scholar 

  135. R. Nubling, J.A. Harrington: Optical properties of single-crystal sapphire fibers, Appl. Opt. 36, 5934–5940 (1997)

    Article  Google Scholar 

  136. V. Artjushenko, V. Ionov, K.J. Kalaidjian, A.P. Kryukov, E.F. Kuzin, A.A. Lerman, A.S. Prokhorov, E.V. Stepanov, K. Bakhshpour, K.B. Moran, W. Neuberger: Infrared fibers: Power delivery and medical applications, Proc. SPIE 2396, 25–36 (1995)

    Article  Google Scholar 

  137. T. Abel, J. Hirsch, J.A. Harrington: Hollow glass waveguides for broadband infrared transmission, Opt. Lett. 19, 1034–1036 (1994)

    Article  Google Scholar 

  138. Y. Matsuura, T. Abel, J.A. Harrington: Optical properties of small-bore hollow glass waveguides, Appl. Opt. 34, 6842–6847 (1995)

    Article  Google Scholar 

  139. R.K. Nubling, J.A. Harrington: Hollow-waveguide delivery systems for high-power, industrial CO_2 lasers, Appl. Opt. 35, 372–380 (1996)

    Article  Google Scholar 

  140. J. Sanghera, I. Aggarwal: Infrared Fiber Optics (CRC, Boca Raton 1998)

    Google Scholar 

  141. A. Weinert: Plastic Optical Fibers: Principle, Components, Installation (VCH, Weinheim 1999)

    Google Scholar 

  142. Y. Watanabe, C. Tanaka: Current status of perfluorinated GI-POF and 2.5 Gbps data transmission over it, Proc. OFC, Los Angeles (2003) pp. 12–13

    Google Scholar 

  143. E. Yablonovitch: Photonic band-gap structures, J. Opt. Soc. Am. B 10, 283–295 (1993)

    Article  Google Scholar 

  144. T.A. Birks, R.J. Robert, P.S.J. Russell: Full 2-D photonic band gaps in silica/air structures, Electron. Lett. 31, 1941–1943 (1995)

    Article  Google Scholar 

  145. J.C. Knight, T.A. Birks, D.M. Adkin, P.S.J. Russel: Pure silica single mode fiber with hexagonal photonic crystal cladding, Proc. OFC, San Jose (1996), PD3

    Google Scholar 

  146. P. Russel: Photonic crystal fibers, Science 299, 385–362 (2003)

    Google Scholar 

  147. T.A. Birks, J.C. Knight, P.S.J. Russell: Endlessly single-mode photonic crystal fibers, Opt. Lett. 22, 961–963 (1977)

    Article  Google Scholar 

  148. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin: All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1547–1549 (1996)

    Article  Google Scholar 

  149. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen: High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express 11, 818–823 (2003)

    Article  Google Scholar 

  150. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.S.J. Russell: Anormalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett. 12, 807–809 (2000)

    Article  Google Scholar 

  151. J.K. Ranka, R.S. Windeler, A.J. Stentz: Visible continuum generation in air-silica microstructure optical fibers with anormalous dispersion at 800 nm, Opt. Lett. 25, 25–27 (2000)

    Article  Google Scholar 

  152. T. Udem, R. Holzwarth, T.W. Hänsch: Optical frequency metrology, Nature 416, 233–237 (2002)

    Article  Google Scholar 

  153. B. Povazy, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.E. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S.J. Russel, M. Vetterlein, E. Scherzer: Submicrometer axial resolution optical coherence tomography, Opt. Lett. 27, 1800–1802 (2002)

    Article  Google Scholar 

  154. A. Ortigosa-Blanch, J.C. Knight, W.J. Wadsworth, J. Arriaga, B.J. Mangan, T.A. Birks, P.S.J. Russel: Highly birefrigent photonic crystal fibers, Opt. Lett. 25, 1325–1327 (2000)

    Article  Google Scholar 

  155. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, D.C. Allan: Single-mode photonic bandgap guidance of light in air, Science 285, 1537–1539 (1999)

    Article  Google Scholar 

  156. B.J. Mangan, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, F. Cony, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T.A. Birks, J.C. Knight, P.S.J. Russel: Low loss (1.7 dB/km) hollow core photonic bandgap fiber, Proc. Opt. Fiber Commun. Conf., Vol. 2 (Optical Society of America, Los Angeles 2004) p. 3, (post deadline paper)

    Google Scholar 

  157. K. Nakayama: Ultra-low loss (0.151 dB/km) fiber and its impact on submarine transmission system, Proc. OFC (Anaheim 2002), FA10-1

    Google Scholar 

  158. J.D. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, B. Mangan: High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers, Opt. Express 12, 717–723 (2004)

    Article  Google Scholar 

  159. G. Bouwmans, F. Luan, J. Knight, P.S.J. Russell, L. Farr, B. Mangan, H. Sabert: Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength, Opt. Express 13, 1613–1620 (2003)

    Article  Google Scholar 

  160. B.T. Kolomiets: Chalcogenide alloy vitreous semiconductor physiochemical, optical, electrical, photoelectric and glass crystal transition properties, Phys. Status Solidi (b) 7, 359–372 (1964)

    Article  Google Scholar 

  161. J. Feinleib, J. deNeufville, S.R. Ovshinsky: Rapid reversible light-induced crystallization of amorphous semiconductors, Appl. Phys. Lett. 18, 254–257 (1971)

    Article  Google Scholar 

  162. A.W. Smith: Injection laser writing on chalcogenide films, Appl. Opt. 13, 795–798 (1974)

    Article  Google Scholar 

  163. N. Yamada, S. Ohara, K. Nishiuchi, M. Nagashima, M. Takenaga, S. Nakamura: Erasable optical disc using TeO_x thin film, Proc. 3rd Int. Display Res. Conf., Japan Display, Kobe, ed. by F.J. Kahn, T. Yoshida (Society for Information Display and Institute of Television Engineers of Japan, 1983) pp. 46–48

    Google Scholar 

  164. M. Chen, K.A. Rubin, V. Marrello, U.G. Gerber, V.B. Jipson: Reversibility and stability of tellurium alloys for optical data storage applications, Appl. Phys. Lett. 46, 734–736 (1985)

    Article  Google Scholar 

  165. M. Terao, T. Nishida, Y. Miyauchi, T. Nakao, T. Kaku, S. Horigome, M. Ojima, Y. Tsunoda, Y. Sugita, Y. Ohta: Sn–Te–Se phase change recording film for optical disks, Proc. SPIE 529, 46 (1985)

    Article  Google Scholar 

  166. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao: Rapid-phase transitions of GeTe-Sb_2Te_3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys. 69, 2849–2856 (1991)

    Article  Google Scholar 

  167. N. Yamada: Erasable phase-change optical materials, MRS Bulletin 21(9), 48–50 (1996)

    Google Scholar 

  168. H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura: Completely erasable phase change optical disk, Jpn. J. Appl. Phys. 31(2), 461–465 (1992)

    Article  Google Scholar 

  169. M. Horie, N. Nobukuni, K. Kiyono, T. Ohno: High-speed rewritable DVD up to 20 m/s with nucleation-free eutectic phase-change material of Ge(Sb_70Te_30)+Sb, Proc. SPIE 4090, 135–143 (2001)

    Article  Google Scholar 

  170. H. Tashiro, M. Harigaya, K. Ito, M. Shinkai, K. Tani, N. Yiwata, A. Watada, N. Toyoshima, K. Makita, A. Kitano, K. Kato: Phase-change material for high-speed rewritable media, Proc. E*PCOS2003, Lugano, ed. by I. Satoh (2003), (online publication http://www.epcos.org/pdf_2003/Tashiro.pdf

  171. H.E. Kissinger: Variation of peak temperature with heating rate in different thermal analysis, J. Res. Nat. Bur. Stand. 57, 217–221 (1956)

    Article  Google Scholar 

  172. H.E. Kissinger: Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11), 1702–1706 (1957)

    Article  Google Scholar 

  173. H. Kubota: Hadou-kougaku (Iwanami, Tokyo 1971), (in Japanese)

    Google Scholar 

  174. K. Nishiuchi, N. Yamada, N. Akahira, M. Takenaga: Laser diode beam exposure instrument for rapid quenching of thin-film materials, Rev. Sci. Instrum. 63(6), 3425–3430 (1992)

    Article  Google Scholar 

  175. I. Satoh, N. Yamada: DVD-RAM for all audio/video, PC, and network applications, Proc. SPIE 4085, 283–290 (2001)

    Article  Google Scholar 

  176. H.M. Rietveld: A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  177. H.J. Williams, R.C. Sherwood, F.G. Foster, E.M. Kelley: Magnetic writing on thin films of MnBi, J. Appl. Phys. 28(10), 1181–1184 (1957)

    Article  Google Scholar 

  178. L. Mayer: Curie-point writing on magnetic films, J. Appl. Phys. 29(6), 1003 (1958)

    Article  Google Scholar 

  179. J.T. Chang, J.F. Dillon Jr., U.F. Gianola: Magneto-optical variable memory based upon the properties of a transparent ferrimagnetic garnet at its compensation temperature, J. Appl. Phys. 36, 1110–1111 (1965)

    Article  Google Scholar 

  180. P. Chaudhari, J.J. Cuomo, R.J. Gambino: Amorphous metallic films for magneto-optic, Appl. Phys. Lett. 22, 337–339 (1973)

    Article  Google Scholar 

  181. W.P. Van Drent, T. Suzuki: A new ultra-violet magneto-optical spectroscopic instrument and its application to Co-based multilayers and thin films, IEEE Trans. Magn. 33(5), 3223–3225 (1997)

    Article  Google Scholar 

  182. J. Saito, M. Sato, H. Matsumoto, H. Akasaka: Direct overwrite by light power modulation on magneto-optical multi-layered media, Jpn. J. Appl. Phys. 26(Suppl. 4), 155–159 (1987)

    Article  Google Scholar 

  183. T. Fukami, Y. Kawano, T. Tokunaga, Y. Nakaki, K. Tsutsumi: Direct overwrite technology using exchange-coupled multilayer, J. Magn. Soc. Jpn. 15(Suppl. 1), 293–298 (1987)

    Google Scholar 

  184. M. Kaneko, K. Aratani, M. Ohta: Multilayered magneto-optical disks for magnetically induced super resolution, Jpn. J. Appl. Phys. Ser. 6, 203–210 (1991)

    Google Scholar 

  185. K. Aratani, A. Fukumoto, M. Ohta, M. Kaneko, K. Watanabe: Magnetically induced super resolution in a novel magneto-optical disk, Proc. SPIE 1499, 209–215 (1991)

    Article  Google Scholar 

  186. M. Ohta, A. Fukumoto, M. Kaneko: Read out mechanism of magnetically induced super resolution, J. Magn. Soc. Jpn. 15(Suppl. 1), 319–322 (1991)

    Google Scholar 

  187. A. Takahashi, M. Kaneko, H. Watanabe, Y. Uchihara, M. Moribe: 5 Gbit/inch2 MO technology, J. Magn. Soc. Jpn. 22(Suppl. 2), 67–70 (1998)

    Google Scholar 

  188. K. Shono: 3.5-inch MO disk using double-mask MSR Media, J. Magn. Soc. Jpn. 23, 177–180 (1999)

    Google Scholar 

  189. M. Birukawa, K. Uchida, N. Miyatake: Reading a 0.2 μ m mark using the MSR method, J. Magn. Soc. Jpn. 20(Suppl. S1), 103–108 (1996)

    Google Scholar 

  190. E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, C.-H. Chang: Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61, 142–144 (1992)

    Article  Google Scholar 

  191. V. Kottler, N. Essaidi, N. Ronarch, C. Chappert, Y. Chen: Dichroic imaging of magnetic domains with a scanning near-field optical microscope, J. Magn. Magn. Mater. 165(1–3), 398–400 (1997)

    Article  Google Scholar 

  192. S. Sato, T. Ishibashi, T. Yoshida, J. Yarnarnoto, A. Iijirna, Y. Mitsuoka, K. Nakajima: Observation of recorded marks of MO disk by scanning near-field magneto-optical microscope, J. Magn. Soc. Jpn. 23(Suppl. 1), 201–204 (1999)

    Google Scholar 

  193. Y. Martin, D. Rugar, H.K. Wickramasinghe: High-resolution magnetic imaging of domains in TbFe by force microscopy, Appl. Phys. Lett. 52, 244–246 (1988)

    Article  Google Scholar 

  194. P. Grutter, D. Rugar, T.R. Alberechit, H.J. Mamin: Magnetic force microscopy-recent advantages and applications to magneto-optic recording, J. Magn. Soc. Jpn. 15(Suppl. S1), 243–244 (1991)

    Google Scholar 

  195. H.W. van Kesteren, A.J. den Boef, W.B. Zeper, J.H.M. Spruit, B.A.J. Jacobs, P.F. Carcia: Scanning magnetic force microscopy on Co/Pt magneto-optical disks, J. Magn. Soc. Jpn. 15(Suppl. S1), 247–250 (1991)

    Google Scholar 

  196. P. Giljer, J.M. Sivertsen, J.H. Judy, C.S. Bhatia, M.F. Doerner, T. Suzuki: Magnetic recording measurements of high coercivity longitudinal media using magnetic force microscopy (MFM), J. Appl. Phys. 79(8), 5327–5329 (1996)

    Article  Google Scholar 

  197. M. Birukawa, Y. Hino, K. Nishikiori, K. Uchida, T. Shiratori, T. Hiroki, Y. Miyaoka, Y. Hozumi: Two-inch-diameter magneto-optical disk system with 3 GB capacity and 24 Mbps data transfer rate using a red laser, Trans. Magn. Soc. Jpn. 2, 273–278 (2002)

    Article  Google Scholar 

  198. H. Awano, S. Ohnuki, H. Shirai, N. Ohta, A. Yamaguchi, S. Sumi, K. Torazawa: Magnetic domain expansion readout for amplification of an ultra high density magneto-optical recording signal, Appl. Phys. Lett. 69, 4257–4259 (1996)

    Article  Google Scholar 

  199. T. Shiratori, E. Fujii, Y. Miyaoka, Y. Hozumi: High-density magneto-optical recording with domain displacement detection, J. Magn. Soc. Jpn. 22(Suppl. 2), 47–50 (1998)

    Google Scholar 

  200. T. Araki: Optical distance meter developed using a short pulse width laser diode, a fast avalanche photodiode, Rev. Sci. Instrum. 66, 43–47 (1995)

    Article  Google Scholar 

  201. T. Araki, S. Yokuyama, N. Suzuki: Simple optical distancemeter using an intermode-beat modulation of He-Ne laser and an electrical heterodyne technique, Rev. Sci. Instrum. 65, 1883–1888 (1994)

    Article  Google Scholar 

  202. M. Born, E. Wolf: Principle of Optics, 7th edn. (Cambridge Univ. Press, Cambridge 1997)

    Google Scholar 

  203. S. Alaruri, A. Brewington, M. Thomas, J. Miller: High-temperature remote thermometry using laser induced fluorescence decay lifetime measurements of Y_2O_3:Eu and YAG:Tb, IEEE Trans. Instrum. Meas. 42, 735–739 (1993)

    Article  Google Scholar 

  204. A.C. Eckbreth, G.M. Dobbs, J.H. Stufflebeam, P.A. Tellex: CARS temperature and species measurements in augmented jet engine exhausts, Appl. Opt. 23, 1328–1339 (1984)

    Article  Google Scholar 

  205. M. Hashimoto, T. Araki, S. Kawata: Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration, Opt. Lett. 25, 1768–1770 (2000)

    Article  Google Scholar 

  206. N. Brand, C. Gizoni: Moiré contourography and infrared thermography; Changes resulting from chiropractic adjustments, J. Manip. Physiol. Ther. 5, 113–116 (1982)

    Google Scholar 

  207. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto: Optical coherence tomography, Science 254, 1178–1181 (1991)

    Article  Google Scholar 

  208. Y. Aizu, T. Asakura: Coherent optical techniques for diagnostics of retinal blood flow, J. Biomed. Opt. 4, 61–75 (1999)

    Article  Google Scholar 

  209. N. Konishi, H. Fujii: Real-time visualization of retinal microcirculation by laser flowgraphy, Opt. Eng. 34, 65–68 (1995)

    Article  Google Scholar 

  210. J.G. Webster: Design of Pulse Oximeter (IOP, Bristol 1997)

    Book  Google Scholar 

  211. K. Matsushima, K. Aoki, Y. Yamada, N. Kakuta: Fundamental study of reflection pulse oximetry, Opt. Rev. 10, 482–487 (2003)

    Article  Google Scholar 

  212. H. Koizumi, Y. Yamashita, A. Maki, T. Yamamoto, Y. Itoh, H. Itagaki, R. Kennan: Higher-order brain function analysis by trans-cranial dynamic near-infrared spectroscopy imaging, J. Biomed. Opt. 4, 403–413 (1999)

    Article  Google Scholar 

  213. M. Okuyama, N. Tsumura, Y. Miyake: Evaluating a multi-spectral imaging system for mapping pigments in human skin, Opt. Rev. 10, 580–584 (2003)

    Article  Google Scholar 

  214. S.A. Pape, C.A. Skouras, P.O. Byrne: An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth, Burns 27, 233–239 (2001)

    Article  Google Scholar 

  215. S. Roth, I. Freund: Second harmonic generation in collagen, J. Chem. Phys. 70, 1637–1643 (1979)

    Article  Google Scholar 

  216. T. Yasui, Y. Tohno, T. Araki: Characterization of collagen orientation in human dermis by two-dimensional second-harmonic-generation polarimetry, J. Biomed. Opt. 9, 259–264 (2004)

    Article  Google Scholar 

  217. R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper: Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol. 47, 3853–3863 (2002)

    Article  Google Scholar 

  218. J.S. Nelson: Special section on optics of human skin, J. Biomed. Opt. 9, 247–420 (2004)

    Article  Google Scholar 

  219. C. Chou, C. Han, W. Kuo, Y. Huang, C. Feng, J. Shyu: Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter, Appl. Opt. 37, 3553–3557 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tadashi Itoh , Tsutomu Araki Prof. , Masaaki Ashida Ph.D. , Tetsuo Iwata Prof. , Kiyofumi Muro Prof. or Noboru Yamada Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag

About this chapter

Cite this chapter

Itoh, T., Araki, T., Ashida, M., Iwata, T., Muro, K., Yamada, N. (2011). Optical Properties. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Metrology and Testing. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16641-9_11

Download citation

Publish with us

Policies and ethics