Skip to main content

Faraday and Kerr Effects in Ferromagnets

  • Chapter
Magneto-Optics

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 128))

Abstract

Faraday and Kerr effects are the most important magneto-optical effects for optical recording and optical communication. Since the discovery of anomalously large Faraday rotation due to diamagnetic bismuth ions in ferrimagnetic garnets, both fundamental and applied research into magneto-optical effects have been extensively developed. In this chapter, the origin of Faraday and Kerr effects of the ferromagnet, CrBr3, is described in terms of ligand field theory. Then, the anomalously large Faraday rotation in ferrimagnetic garnets is theoretically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Faraday: Phil. Trans. Roy. Soc. 136, 1 (1846)

    Article  Google Scholar 

  2. 2. Handbook of Chemistry and Physics 78th ed. edited by D.R.Lide (CRC Press, New York 1997) p. 12–160

    Google Scholar 

  3. T. Hibiya: Current Topics in Crystal Growth Research 3, 199 (1997)

    Google Scholar 

  4. J. F. Dillon, Jr.: in Magnetism III edited by G. T. Rado and H. Suhl ( Academic Press, New York and London 1963 )

    Google Scholar 

  5. M. Born and E. Wolf: Principle of Optics 4th ed., Chap. 14 (Pergamon Press 1970 )

    Google Scholar 

  6. J. F. Dillon, Jr.: in Physics of Magnetic Garnets, Proc. of International School of Physics, Enrico Fermi, p.379 (North-Holland Pub. Company 1978 )

    Google Scholar 

  7. L. Onsager: Phys. Rev. 37, 405 (1931) and 38, 2265 (1931)

    Article  ADS  MATH  Google Scholar 

  8. R. Kubo: J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  9. R. F. Wallis, M. Balkanski: Many-body Aspects of Solid State Spectroscopy (North-Holland 1986 ) p. 29

    Google Scholar 

  10. J. F. Dillon, Jr., H. Kamimura, J. P. Remeika: J. Phys. Chem. Solids 27, 1531 (1966)

    Article  ADS  Google Scholar 

  11. W. Jung: J. AppI. Phys. 36, 2422 (1965)

    Article  ADS  Google Scholar 

  12. K. Shinagawa, T. Suzuki, T. Saito, T. Tsushima: J. Magn. Magn. Mat. 140–144, 171 (1995)

    Google Scholar 

  13. K. H. Johnson, F. C. Smith: Phys. Rev. B5, 831 (1972)

    Article  ADS  Google Scholar 

  14. K. Shinagawa, H. Sato, H. J. Ross, L. F. McAven, P. H. Butler: J. Phys.: Con-dens. Mater. 8, 8457 (1996)

    Article  ADS  Google Scholar 

  15. B. R. Judd: Operator Techniques in Atomic Spectroscopy (McGraw-Hill Book Company, Inc. 1963 )

    Google Scholar 

  16. M. Rotenberg, R. Bivins, N. Metropolis, J. K. Wooten: The 3-j and 6-j Symbols ( MIT Press, Cambridge, MA, 1959 )

    Google Scholar 

  17. S. B. Piepho, P. N. Schatz: Group Theory in Spectroscopy ( John Wiley, New York 1983 )

    Google Scholar 

  18. H. J. Ross, L. F. McAven, K. Shinagawa, P. H. Butler: J. Comput. Phys. 128, 331 (1996)

    Article  ADS  MATH  Google Scholar 

  19. S. Geller: Zeits. Kristall., 125, 1 (1967)

    Article  Google Scholar 

  20. J. F. Dillon, Jr.: J. Phys. Radium 20, 374 (1959)

    Article  Google Scholar 

  21. H. Takeuchi, S. Ito, I. Mikaini, S. Taniguchi: J. Appl. Phys. 44, 4789 (1973)

    Article  ADS  Google Scholar 

  22. M. Kucera, M. Matyas, Jr.: J. Magn Magn. Mat. 140–144, 2105 (1995)

    Google Scholar 

  23. M. Kucera, P. Berankova, J. Bok: Solid State Commun. 90, 121 (1994)

    Article  ADS  Google Scholar 

  24. Y. Tanabe, T. Moriya, S. Sugano: Phys. Rev. Lett. 15, 1023 (1965)

    Article  ADS  Google Scholar 

  25. F. J. Kahn, P. S. Pershan, J. P. Remeika: Phys. Rev. 186, 891 (1975)

    Article  ADS  Google Scholar 

  26. H. Takeuchi, K. Shinagawa, S. Taniguchi: Jpn. J. Appl. Phys. 12, 465 (1973)

    Article  ADS  Google Scholar 

  27. S. Wittekoek, T. J. A. Popma, J. M. Robertson: Proc. MMM Conf., 944 (1972)

    Google Scholar 

  28. Z. Sinisa, H. Le Gall, J. Simsova, J. Kolacek, A. Le Paillier-Malecot: IEEE Trans. on Magn. MAG-20, 1001 (1984)

    Google Scholar 

  29. Early stages of this work were described in K. Shinagawa: J. Magn. Soc. Jpn. 6, 247 (1982) [in Japanese]

    Google Scholar 

  30. A. M. Clogston: J. Appl. Phys. 31, 198S (1960)

    Article  ADS  Google Scholar 

  31. A. S. Moskvin, A. V. Zenkov, E. I. Yuryeva, V. A. Gubanov: Physica B168, 187 (1991)

    Article  Google Scholar 

  32. K. Shinagawa, H. Sato, T. Saito, T. Tsushima. J Magn Magn. Mat. 104–107, 443 (1992)

    Google Scholar 

  33. G. B. Scott, D. E. Lacklison, J. L. Page: Phys. Rev. B10, 971 (1974)

    Article  ADS  Google Scholar 

  34. A.S. Moskvin, A. V. Zenkov: Solid State Commun. 80, 739 (1991)

    Article  ADS  Google Scholar 

  35. G. F. Dionne, G. A. Allen: J. Appl. Phys. 73, 6127 (1993)

    Article  ADS  Google Scholar 

  36. C. J. Ballhausen, H. B. Gray: Molecular Orbital Theory (W. A. Benjamin, New York 1964 )

    Google Scholar 

  37. E. Tobita, K. Shinagawa, T. Saito, T. Tsushima: Proc. of MORIS ‘86, J. Magn. Soc. Jpn. 20, No. S1, 439 (1996)

    Google Scholar 

  38. K. Shinagawa, E. Tobita, K. Ando, T. Saito, T. Tsushima: J. Appl. Phys. 81, 1368 (1997)

    Article  ADS  Google Scholar 

  39. M. Kurimoto, S. Matsubayashi, K. Ando, K. Shinagawa, T. Saito, T. Tsushima: J. Appl. Phys. 83, 4897 (1998)

    Article  ADS  Google Scholar 

  40. S. Matsubayashi, F. Yakabe, M. Kurimoto, K. Shinagawa, T. Saito, T. Tsushima. J Magn. Magn. Mat. 177–181, 249 (1998)

    Google Scholar 

  41. K. Shinagawa, K. Tamanoi, T. Nomoto, T. Saito, H. Sato, T. Tsushima: Proc. of MORIS ‘81, J. Magn. Soc. Jpn., 15, No. S1, 83 (1991)

    Google Scholar 

  42. A. K. Zvezdin, V. A. Kotov: Modern Magnetooptics and Magnetooptical Materials ( Institute of Physics Publishing, Bristol and Philadelphia, 1997 )

    Book  Google Scholar 

  43. R. Pittini, J. Schoenes, O. Vogt, P. Wachter: Phys. Rev. Lett. 77, 944 (1996)

    Article  ADS  Google Scholar 

  44. R. Pittini, J. Schoenes, P. Wachter: Phys. Rev. B55, 7524 (1997)

    Article  ADS  Google Scholar 

  45. R. Pittini, P. Wachter: J. Magn Magn. Mat. 186, 306 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shinagawa, K. (2000). Faraday and Kerr Effects in Ferromagnets. In: Sugano, S., Kojima, N. (eds) Magneto-Optics. Springer Series in Solid-State Sciences, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04143-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04143-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08523-9

  • Online ISBN: 978-3-662-04143-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics