Skip to main content

Recycling of Elastomeric Nanocomposites

  • Chapter
  • First Online:
Recent Advances in Elastomeric Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 9))

Abstract

Recycling elastomeric nanocomposites is discussed in view of resource cascading, which aims at maximum exploitation of the value and service time of resources. Special attention is given to particulate releases linked to the elastomeric nanocomposite lifecycle. Recycling of tyres containing, at least partly nanoparticulate, carbon black is discussed as a practical example of the potential for resource cascading, recycling and particulate releases. In the case of elastomeric nanocomposites in general, prevention of degradation and exploring options for self-healing are worth considering in view of resource cascading. Recycling options for elastomeric nanocomposites include: reuse of the product, remanufacturing of the product and use of nanocomposite granulate (where appropriate, devulcanized). Further options are ‘chemical recycling’ (recycling of constituents or conversion products of nanocomposites) and incineration with energy recovery (‘thermal recycling’). Possibilities for the reduction of nanoparticulate releases linked to the elastomeric nanocomposite life cycle and socioeconomic arrangements favoring recycling are briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, X., Dong, H., Li, C.M.: New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899–904 (2007)

    Article  CAS  Google Scholar 

  2. Kohjiya, S., Katoh, A., Shimanuki, J., Hasegawa, T., Ikeda, Y.: Nanostructural observation of carbon black dispersion in natural rubber matrix by three-dimensional transmission electron microscopy. J. Mater. Sci. 40, 2553–2555 (2005)

    Article  CAS  Google Scholar 

  3. Kolke, E., Kobayashi, T.: Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 65, 946–951 (2006)

    Article  CAS  Google Scholar 

  4. Pal, K., Rajasekar, R., Kang, D.J., Zhang, Z.X., Pal, S.K., Kim, J.K., Das, C.K.: Effect of fillers and nitrile blended PVC on natural rubber/ high styrene rubber with nanosilica blends: morphology and wear. Mater. Des. 21, 25–34 (2010)

    Article  CAS  Google Scholar 

  5. Stone, V., Shaw, J., Brown, D.M., Macnee, W., Faux, S.P., Donaldson, K.: The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol. In Vitro 12, 649–659 (1998)

    Article  CAS  Google Scholar 

  6. Ansarifar, A., Azhar, A., Ibrahim, N., Shiah, S.F., Lawton, J.M.D.: The use of silanized silica filler to reinforce and crosslink natural rubber. Int. J. Adhesion Adhesives 25, 77–86 (2005)

    Article  CAS  Google Scholar 

  7. Bandyopadhyay, A., de Sarkar, M., Bhowmick, A.K.: Epoxidized natural rubber/silica hybrid nanocomposites by sol–gel technique: effect of reactants on the structure and the properties. J. Mater. Sci. 40, 53–62 (2005)

    Article  CAS  Google Scholar 

  8. Carratero-Gonzalez, J., Retsos, H., Verdejo, R., Toki, S., Hsiao, B.S., Giannelis, E.F., Lopez-Manchado, M.A.: Effect of nanoclay on natural rubber microstructure. Macromolecules 41, 6763–6772 (2008)

    Article  CAS  Google Scholar 

  9. Hamdani, S., Longuet, C., Perrin, D., Lopez-Cuesta, J., Ganachaud, F.: Flame retardancy of silicone-based materials. Polym. Degrad. Stab. 94, 465–495 (2009)

    Article  CAS  Google Scholar 

  10. Hanu, L.G., Simon, G.P., Cheng, Y.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)

    Article  CAS  Google Scholar 

  11. Hrachova, J., Chodak, I., Komadel, P.: Modification and characterization of montmorillonite fillers used in composites with vulcanized natural rubber. Chem. Pap. 63, 55–61 (2006)

    Article  CAS  Google Scholar 

  12. Ikeda, Y., Poompradub, S., Morita, Y., Kohjiya, S.: Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J. Sol Gel Sci. Technol. 45, 299–306 (2008)

    Article  CAS  Google Scholar 

  13. Ismail, H., Osman, H., Jaafar, M.: Hybrid-filler filled polypropylene/(natural rubber) composites: effects of natural weathering on mechanical and thermal properties and morphology. J. Vinyl Addit. Technol. 142–151 (2008). doi:10.1002/vnl.20156

  14. Kelarakis, A., Yoon, K., Sics, I., Somani, R.H., Hsiao, B.S., Chu, B.: Uniaxial deformation of an elastomer nanocomposite containing modified carbon nanofibers by in situ synchrotron X ray diffraction. Polymer 46, 5103–5117 (2005)

    Article  CAS  Google Scholar 

  15. Khosrokhavar, R., Bakhshandseh, G.R., Ghoreishy, M.H.R., Naderi, G.H.: PP/EPDM blends and their developments up to nanocomposites. J. Reinf. Plast. Compos. 28, 613–639 (2009)

    Article  CAS  Google Scholar 

  16. Koo, J.H., Nguyen, K.C., Lee, J.C., Ho, W.K., Bruns, M.C., Ezekoye, O.A.: Flammability studies of a novel class of thermoplastic elastomer nanocomposites. J. Fire Sci. 28, 49–85 (2010)

    Article  CAS  Google Scholar 

  17. Lewicki, J.P., Liggat, J.J., Pethrick, R.A., Patel, M., Rhoney, I.: Investigating the aging behavior of polysiloxane nanocomposites by degradative thermal analysis. Polym. Degrad. Stab. 93, 158–168 (2008)

    Article  CAS  Google Scholar 

  18. Lewicki, J.P., Liggat, J.J., Hayward, D., Pethrick, R.A., Patel, M.: Degradative thermal analysis and dielectric spectroscopy studies of aging in polysiloxane nanocomposites. In: Celina, M. (ed.) Polymer Degradation and Performance. American Chemical Society, Washington (2009)

    Google Scholar 

  19. Li, Y., Shimizu, H.: Towards a stretchable, elastic, and electrically conductive nanocomposite: morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42, 2587–2593 (2009)

    Article  CAS  Google Scholar 

  20. Lopez-Manchado, M.A., Arroyo, M., Herrero, B., Biagotti, J.: Vulcanization kinetics of natural rubber-organoclay nanocomposites. J. Appl. Polym. Sci. 89, 1–15 (2003)

    Article  CAS  Google Scholar 

  21. Nambiar, A.N., Mahalik, N.P.: Trends in food packaging and manufacturing systems and technology. Trends Food Sci. Technol. (2010). doi:10.1016/j.tifs.2009.12.006

  22. Peng, Z., Kong, L.X., Li, S., Chen, Y., Huang, M.F.: Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos. Sci. Technol. 67, 3130–3139 (2007)

    Article  CAS  Google Scholar 

  23. Ratanasom, N., Saowapark, T., Deepraertkul, C.: Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym. Test. 26, 360–377 (2007)

    Article  CAS  Google Scholar 

  24. Sae-Oui, P., Sirisinha, C., Thepsuwan, U., Hatthapanit, K.: Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings. Eur. Polym. J. 43, 185–193 (2007)

    Article  CAS  Google Scholar 

  25. Shimpi, N.G., Mishra, S.: Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites. J. Nanopart. Res. (2010). doi:10.1007/s11051-009-9768-x

  26. Song, L., Li, M., Hu, Y., Lu, H.: Study on preparation and properties of silane-crosslinked polyethylene/magnesium hydroxide/montmorillonite nanocomposites. J. Fire Sci. 26, 493–507 (2008)

    Article  CAS  Google Scholar 

  27. Utracki, L.A., Sepehr, M., Boccaleri, E.: Synthetic, layered nanoparticles for polymeric nanocomposites. Polym. Adv. Technol. 18, 1–37 (2007)

    Article  CAS  Google Scholar 

  28. Wahit, M.U., Hassan, A., Rahmat, A.R., Lim, J.W., Mohd Ishak, Z.A.: Effect of organoclay and ethylene-octene copolymer inclusion on the morphology and mechanical properties of polyamide/polypropylene blends. J. Reinf. Plast. Compos. 26, 9333–9955 (2006)

    Google Scholar 

  29. Wang, T., Dalton, A.B., Keddie, J.L.: Importance of molecular friction in a soft polymer-nanotube nanocomposite. Macromolecules 41, 7656–7661 (2008)

    Article  CAS  Google Scholar 

  30. Yang, L., Seryowati, K., Li, A., Gong, S., Chen, J.: Reversible infrared actuation of carbon nanotube-liquid crystalline elastomer nanocomposites. Adv. Mater. 20, 2271–2275 (2008)

    Article  CAS  Google Scholar 

  31. Zhu, L., Wool, R.P.: Nanoclay reinforced bio-based elastomers: synthesis and characterization. Polymer 47, 8106–8115 (2006)

    Article  CAS  Google Scholar 

  32. Khanna, V., Bakshi, B.R.: Carbon nanofiber polymer composites: evaluation of life cycle energy use. Environ. Sci. Technol. 43, 2078–2084 (2009)

    Article  CAS  Google Scholar 

  33. Lloyd, S.M., Lave, L.B.: Life cycle economic and environmental implications of using nanocomposites in automobiles. Environ. Sci. Technol. 37, 3458–3466 (2003)

    Article  CAS  Google Scholar 

  34. Vogtländer, J.G., Brezet, H.C., Hendriks, C.F.: Allocation in recycling systems. Int. J. Life Cycle Assess. 5, 344–355 (2001)

    Article  Google Scholar 

  35. El Fray, M.: Polymer matrix nanocomposites from biodegradable thermoplastic elastomers. Adv. Eng. Mat. 11, B35–B39 (2009)

    Article  CAS  Google Scholar 

  36. Liao, H., Wu, C.: Synthesis and characterization of polyethylene-octene elastomer/clay/biodegradable starch nanocomposites. J. Appl. Polym. Sci. 97, 397–404 (2005)

    Article  CAS  Google Scholar 

  37. Singh, N.K., Purkayastha, B.D., Roy, J.K., Banik, J.M., Yashpal, M., Singh, G., Malik, S., Maiti, P.: Nanoparticles-induced controlled biodegradation and its mechanism in poly(caprolactam). Appl. Mater. Interfaces 2, 69–81 (2010)

    Article  CAS  Google Scholar 

  38. Stevenson, K., Stallwood, B., Hart, A.G.: Tire rubber recycling and bioremediation. Bioremediat. J. 12, 1–11 (2008)

    Article  CAS  Google Scholar 

  39. Zhao, R., Torley, P., Halley, P.J.: Emerging biodegradable materials: starch and protein based bionanocomposites. J. Mater. Sci. 43, 3058–3071 (2008)

    Article  CAS  Google Scholar 

  40. Sirkin, T., ten Houten, M.: The cascade chain. Resour. Conserv. Recycl. 11, 215–277 (1994)

    Google Scholar 

  41. Yamashita, H., Kishino, H., Hanyu, K., Hayashi, C., Abe, K.: Circulation indexes: new tools for analyzing the structure of material cascades. Resour. Recycl. Conserv. 28, 85–104 (2000)

    Article  Google Scholar 

  42. Reijnders, L.: A normative strategy for resource choice and recycling. Resour. Conserv. Recycl. 28, 121–133 (2000)

    Article  Google Scholar 

  43. Reijnders, L.: Improving resource cascading. In: Loeffe, C.V. (ed.) Trends in Conservation and Recycling of Resources. Nova Science Publishers, New York (2007)

    Google Scholar 

  44. Al-Salem, S.M., Lettieri, P., Baeyens, J.: Kinetics and product distribution of end of life tyres (ELTs) pyrolysis: a novel approach in polyisoprene and SBS thermal cracking. J. Hazard. Mater. 172, 1690–1694 (2009)

    Article  CAS  Google Scholar 

  45. van Beukering, B.J.H., Janssen, M.A.: Trade and recycling of used tyres in Western and Eastern Europe. Resour. Conserv. Recycl. 33, 253–265 (2001)

    Google Scholar 

  46. Amari, T., Themelis, N.J., Wernick, I.K.: Resource recovery from used rubber tires. Resour. Policy 25, 179–188 (1999)

    Article  Google Scholar 

  47. Du, M., Guo, B., Jia, D.: Effect of thermal and UV induced grafting of bismaleide on mechanical performance of reclaimed rubber/natural rubber blend. J. Polym. Res. 12, 473–482 (2005)

    Article  CAS  Google Scholar 

  48. Nelson, F.A., Kutty, S.K.N.: Effect of silane coupling agent on cure characteristics and mechanical properties of chloroprene rubber/ reclaimed rubber blend. Polym. Plast. Eng. 43, 1141–1156 (2004)

    Article  CAS  Google Scholar 

  49. Smith, D.G., Daniels, E.J., Teotia, A.P.S.: Testing and evaluating commercial applications of new surface-treated rubber technology utilizing waste tires. Resour. Conserv. Recycl. 15, 133–144 (1995)

    Article  Google Scholar 

  50. Sonnier, R., Leroy, E., Clerc, L., Bergeret, A., Lopez-Cuesta, J., Bretelle, A., Ienny, P.: Compatibilizing thermoplastic/ground tyre rubber powder blends: efficiency and limits. Polym. Test. 27, 901–907 (2008)

    Article  CAS  Google Scholar 

  51. Taha, M.M.R., El-Dieb, A.S., ElWahab, M.A.A., Abdel-Waheed, M.E.: Mechanical, fracture, and microstructural investigations of rubber concrete. J. Mater. Civil Eng. 20, 640–649 (2008)

    Article  CAS  Google Scholar 

  52. Zhang, S.L., Xin, Z.X., Zhang, Z.X., Kim, J.K.: Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Manage. 29, 1480–1485 (2009)

    Article  CAS  Google Scholar 

  53. Kojima, M., Tosaka, M., Ikeda, Y., Kohjiya, S.: Devulcanization of carbon black filled natural rubber using supercritical carbon dioxide. J. Appl. Polym. Sci. 95, 137–143 (2005)

    Article  CAS  Google Scholar 

  54. Li, S., Lamminmäki, J., Hanhi, K.: Improvement of mechanical properties of rubber compounds using waste rubber/virgin rubber. Polym. Eng. Sci. 45, 1239–1246 (2005). doi:10.1002/pen.20402

    Article  CAS  Google Scholar 

  55. Kumar, P., Fukahori, Y., Thomas, A.G., Busfield, J.J.C.: Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix. J. Polym. Sci. B 45, 3169–3180 (2007)

    Article  CAS  Google Scholar 

  56. Acierno, D., Ciccarelli, I., Romano, V., Russo, P.: Mechanical and thermal analysis of composites based on rubbers from used tires. Macromol. Symp. 247, 244–251 (2007)

    Article  CAS  Google Scholar 

  57. Lee, S.H., Balsubramanian, M., Kim, J.K.: Dynamic reaction inside co-rotating twin screw extruder. I truck tire model material/polypropylene blends. J. Appl. Polym. Sci. 106, 3193–3208 (2007)

    Article  CAS  Google Scholar 

  58. Sae-Oui, P., Sirisinha, C., Sa-nguanthammarong, P., Thaptong, P.: Properties and recyclability of thermoplastic elastometer prepared from natural rubber powder (NRP) and high density polyethylene (HDPE). Polym. Test. (2010). doi:10.1016/j.polymertesting.2009.12.101

  59. Xin, Z.X., Zhang, Z.X., Pal, K., Byeon, J.U., Lee, S.H., Kim, J.K.: Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend. Mater. Des. 31, 589–593 (2010)

    Article  CAS  Google Scholar 

  60. Milanez, B., Bührs, T.: Extended producer responsibility in Brazil: the case of tyre waste. J. Clean. Prod. 17, 608–615 (2009)

    Article  Google Scholar 

  61. Parkinson, H.J., Thompson, G.: Analysis and taxonomy of remanufacturing. Proc. Inst. Mech. Eng. 218, 1–13 (2003)

    Google Scholar 

  62. Perugini, F., Mastellone, M.L., Arena, U.: A life cycle assessment of mechanical and feedstock recycling options for management of plastic packaging wastes. Environ. Prog. 24, 137–154 (2005)

    Article  CAS  Google Scholar 

  63. Al-Salem, S.M., Lettieri, P., Baeyens, J.: The valorization of plastic solid waste (PSW) by primary and quaternary routes: from reuse to energy and chemicals. Progress Energy Combust. Sci. 36, 103–129 (2010)

    Article  CAS  Google Scholar 

  64. Kalitko, V.A.: Steam-thermal recycling of tire shreds: calculation of the rate of explosion-proof feed of steam. J. Eng. Phys. Thermophys. 81, 781–786 (2008)

    Article  CAS  Google Scholar 

  65. Kaminsky, W., Mennerich, C.: Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1, 3-butadiene, styrene and carbon black. J. Anal. Appl. Pyrol. 58–59, 803–811 (2001)

    Article  Google Scholar 

  66. Kaminsky, W., Mennerich, C., Zhang, Z.: Feedstock recycling of synthetic and natural rubber by pyrolysis in a fluidized bed. J. Anal. Appl. Pyrol. 85, 334–337 (2009)

    Article  CAS  Google Scholar 

  67. Shah, J., Jan, M.R., Mabood, F.: Catalytic conversion of waste tyres into valuable hydrocarbons. J. Polym. Environ. 15, 207–211 (2007)

    Article  CAS  Google Scholar 

  68. Williams, B.T., Brindle, A.J.: Fluidized bed catalytic pyrolysis of scrap tyres: influence of catalyst; tyre ratio and catalyst temperature. Waste Manage. Res. 20, 546–555 (2002)

    Article  CAS  Google Scholar 

  69. Mirmiran, S., Pakdel, H., Roy, C.: Characterization of used tire vacuum pyrolysis oil: nitrogenous compounds from the naphtha fraction. J. Anal. Appl. Pyrol. 22, 205–215 (1992)

    Article  CAS  Google Scholar 

  70. Zhou, J., Yu, T., Wu, S., Xie, Z., Yang, Y.: Inverse gas chromatography investigation of rubber reinforcement by modified pyrolytic carbon black from scrap tires. Ind. Eng. Chem. Res. 49, 1691–1896 (2010)

    Article  CAS  Google Scholar 

  71. Mui, E.L.K., Cheung, W.H., Valix, M., McKay, G.: Mesoporous activated carbon from waste tyre rubber for dye removal from effluents. Microporous Mesoporous Mater. 130, 287–294 (2010)

    Article  CAS  Google Scholar 

  72. Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010)

    Article  CAS  Google Scholar 

  73. Mantecca, P., Sancini, G., Moschini, E., Farina, F., Gualthieri, M., Rohr, A., Miserocchi, G., Palestini, P., Camatini, M.: Lung toxicity induced by intratracheal installation of size fractionated tire particles. Toxicology 189, 206–214 (2009)

    CAS  Google Scholar 

  74. Brockmann, M., Fischer, M., Müller, K.M.: Exposure to carbon black: a cancer risk? Int. Arch. Occup. Environ. Health 71, 85–95 (1998)

    Article  CAS  Google Scholar 

  75. Nikula, K.J., Snipes, M.B., Barr, E.B., Griffith, W.C., Henderson, R.F., Mauderly, J.L.: Comparative pulmonary toxicology and carcinogenicity of chronically inhaled diesel exhaust and carbon black in F 344 rats. Fundam. Appl. Toxicol. 25, 80–94 (1995)

    Article  CAS  Google Scholar 

  76. International Agency for Research on Cancer (IARC): Monographs on the evaluation of carcinogenic risk to humans. Vol. 93. Carbon black, titanium dioxide and non-asbestiform talc. IARC, Lyon (2006)

    Google Scholar 

  77. Inoue, H., Shimada, A., Kaewamatawong, T., Naota, M., Morita, T., Ohta, Y., Inoue, K., Takano, H.: Ultrastructural changes of the air-blood barrier in mice after intratracheal instillation of lipopolysaccharide and ultrafine carbon black particles. Exp. Toxicol. Pathol. 61, 51–58 (2009)

    Article  CAS  Google Scholar 

  78. Chen, Y., Ton, S., Lee, M., Chia, T., Shu, H., Wu, Y.: Assessment of occupational health hazards in scrap-tire shredding facilities. Sci. Total Environ. 309, 33–46 (2003)

    Google Scholar 

  79. van Beers, D., Bertram, M., Fuse, K., Spatari, S., Graedel, T.E.: The contemporary Oceania zinc cycle: one years stocks and flows. J. Mater. Cycles Waste Manage. 6, 125–144 (2004)

    Google Scholar 

  80. Sörme, L., Bergabäck, B., Lohm, U.: Goods in the anthroposphere as a metal emission source. Water Air Soil Pollut. Focus 1, 213–227 (2001)

    Google Scholar 

  81. Borm, P.J.A., Beruba, D.: A tale of opportunities, uncertainties, and risks. NanoToday 3, 56–59 (2008)

    CAS  Google Scholar 

  82. Nurkiewicz, T.R., Porter, D.W., Hubbs, A.F., Stone, S., Chen, B.T., Frazer, D.G., Boegehold, M.A., Castranova, V.: Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol. Sci. 110, 191–203 (2009)

    Article  CAS  Google Scholar 

  83. Oberdörster, G., Stone, V., Donaldson, K.: Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1, 2–25 (2007)

    Article  CAS  Google Scholar 

  84. Shvedova, A.A., Kagan, V.E.: The role of nanotoxicology in realizing the ‘helping without harm’ paradigm of nanomedicine: lessons from studies of pulmonary effects of single-walled carbon nanotubes. J. Intern. Med. 267, 106–118 (2010)

    Article  CAS  Google Scholar 

  85. Ye, Y., Chen, M., Sun, L., Lan, M.: In vitro toxicity of silica nanoparticles in myocardial cells. Environ. Toxicol. Pharmacol. (2010). doi:10.1016/j.etap.2009.12.002

  86. Auffan, M., Rose, J., Bottero, J., Lowry, G.V., Jolivet, J., Wiesner, M.A.: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 4, 634–641 (2009)

    Article  CAS  Google Scholar 

  87. Borm, P., Castranova, V.: Toxicology of nanomaterials: permanent interactive learning. Part. Fibre Toxicol. 6, 28 (2009)

    Article  CAS  Google Scholar 

  88. Brown, S.C., Kamal, M., Nasreen, N., Baumuratov, A., Sharma, P., Antony, V.B., Moudgil, B.M.: Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv. Powder Technol. 18, 69–79 (2007)

    Article  CAS  Google Scholar 

  89. Casals, E., Vazquez-Campos, S., Bastus, N.G., Puntes, V.: Distribution and potential toxicity of engineered inorganic nanoparticles and carbon nanostructures in biological Systems. Trends Anal. Chem. 27, 672–683 (2008)

    Article  CAS  Google Scholar 

  90. Cheng, C., Müller, K.H., Koziol, K.K.K., Skepper, J.N., Midgley, P.A., Welland, M.E., Porter, A.E.: Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160 (2009)

    Article  CAS  Google Scholar 

  91. Choi, H.S., Liu, W., Liu, F., Nasr, K., Misra, P., Bawendi, M.G., Frangioni, J.V.: Design conditions for tumor targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010)

    Article  CAS  Google Scholar 

  92. Jiang, J., Oberdörster, G., Biswas, P.: Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77–80 (2009)

    Article  CAS  Google Scholar 

  93. Li, Y., Li, Y., Li, G., Li, J., Li, J., Huang, G., Li, W.: The acute pulmonary toxicity in mice induced by multiwall carbon nanotube, benzene and their combination. Environ. Toxicol. (2010). doi:10.1002/tox.20512

  94. Mueller, N.C., Nowack, B.: Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008)

    Article  CAS  Google Scholar 

  95. Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)

    Article  CAS  Google Scholar 

  96. Yu, Y., Zhang, Q., Ma, Q., Zhang, B., Yan, B.: Exploring the immunotoxicity of carbon nanotubes. Nanoscale Res. Lett. 3, 271–277 (2008)

    Article  CAS  Google Scholar 

  97. Pauluhn, J.: Multiwalled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul. Toxicol. Pharmacol. (2010). doi:10.1016/j.yrtph.2009.12.012

  98. Donaldson, K., Poland, C.A.: New insights into nanotubes. Nat. Nanotechnol. 4, 708–710 (2009)

    Article  CAS  Google Scholar 

  99. Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J., Hussain, S.M.: Crystal structure mediates mode of cell-death in TiO2 nanotoxicity. J. Nanopart. Res. 11, 1361–1374 (2009)

    Article  CAS  Google Scholar 

  100. Sayes, C.M., Wahi, R., Kurian, P.A., Liu, V., West, J.L., Ausman, K.D., Warheit, D.B., Colvin, V.L.: Correlating nanoscale titania structure with toxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92, 174–185 (2006)

    Article  CAS  Google Scholar 

  101. Long, T.C., Tajuba, J., Sama, P., Salkeh, N., Schwartz, C., Parker, J., Hester, S., Lowry, G.V., Veronesi, B.: Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect. 115, 1631–1637 (2007)

    Article  CAS  Google Scholar 

  102. Ma, L., Liu, J., Li, N., Wang, J., Duan, Y., Yan, J., Liu, H., Wang, H., Hong, D.: Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31, 99–105 (2010)

    Article  CAS  Google Scholar 

  103. Shin, J.A., Lee, E.J., Seo, S.M., Kim, H.S., Kang, J.L., Park, E.M.: Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse. Neuroscience 165, 445–454 (2010)

    Article  CAS  Google Scholar 

  104. Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., Gao, Y., Zhao, Y., Chai, Z.: Potential neurological lesion after nasal installation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 183, 72–80 (2008)

    Article  CAS  Google Scholar 

  105. Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., Chen, C.: Time-dependent translocation and potential impairment on central nervous system by intranasally installed TiO2 nanoparticles. Toxicology 254, 82–90 (2008)

    Article  CAS  Google Scholar 

  106. Gerloff, K., Albrecht, C., Boots, A.W., Forster, I., Schins, R.P.F.: Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3, 355–364 (2009)

    Article  CAS  Google Scholar 

  107. Murray, A.K., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Castranova, V., Shevedova, A.A.: Oxidative stress and inflammatory response in dermal toxicity of single-walled nanotubes. Toxicology 257, 161–171 (2009)

    Article  CAS  Google Scholar 

  108. Reijnders, L.: Safety of nanoparticles in sunscreens. Househ. Pers. Care Today 3, 16–17 (2009)

    Google Scholar 

  109. Wu, J., Liu, W., Xue, C., Zhou, S., Lan, F., Bi, L., Xu, H., Yang, X., Zeng, F.: Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol. Lett. 191, 1–8 (2009)

    Article  CAS  Google Scholar 

  110. Palomäki, J., Karisola, P., Pylkkänen, L., Savolainen, K., Alenius, H.: Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267, 125–131 (2010)

    Article  CAS  Google Scholar 

  111. Barillet, S., Simon-Deckers, A., Herlin-Boime, N., Layne-L’Hermite, M., Reynaud, C., Cassio, D., Gouget, B., Carriere, M.: Toxicological consequences of TiO2, SiC nanoparicles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J. Nanopart. Res. (2010). doi:10.1007/s11051-009-96944

  112. Donaldson, K., Berwick, P.H., Gilmour, P.S.: Free radical activity associated with the surface of particles; a unifying factor in determining biological activity. Toxicol. Lett. 88, 293–298 (1996)

    Article  CAS  Google Scholar 

  113. Falck, G.C.M., Lindberg, H.K., Suhonen, M., Vippola, M., Vanhala, E., Catalan, J., Savolainen, K., Norppa, H.: Genotoxic effects of nanosized and fine TiO2. Hum. Exp. Toxicol. 28, 339–351 (2009)

    Article  CAS  Google Scholar 

  114. Jacobsen, N.R., Pojana, G., White, P., Moller, P., Cohn, C.A., Smith-Korsholm, K., Vogel, U., Marcomini, A., Loft, S., Wollin, H.: Genotoxicty, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FEI-Muta mouse lung epithelial cells. Environ. Mol. Mutagen. 49, 476–487 (2009)

    Article  CAS  Google Scholar 

  115. Ravichandran, P., Periuakaruppan, A., Sadanandan, B., Ramesh, V., Hall, J.C., Jejelowo, O., Ramesh, G.T.: Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J. Biochem. Mol. Toxicol. 23, 333–344 (2009)

    Article  CAS  Google Scholar 

  116. Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y., Liu, J.: Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. In Vitro 23, 808–815 (2009)

    Article  CAS  Google Scholar 

  117. Yu, K.O., Grabinski, C.M., Schrand, A.M., Mursock, R.C., Wang, W., Gu, B., Schlager, J.J., Hussain, S.M.: Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J. Nanopart. Res. 11, 15–24 (2009)

    Article  CAS  Google Scholar 

  118. Rossi, E.M., Pylkänen, L., Koivisto, A.J., Vippola, M., Jensen, K.A., Miettinen, M., Sirola, K., Nykäsenoja, H., Karisola, F., Sternvall, T., Kiilunen, M., Pasanen, P., Mäkinen, M., Hämeri, K., Joutsenaari, F., Jokiniemi, J., Wolff, H., Savolainen, K., Matikainen, S., Alenius, H.: Airway exposure to silica coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol. Sci. 113, 422–433 (2010)

    Article  CAS  Google Scholar 

  119. Liu, S., Xu, L., Zhang, T., Ren, G., Yang, Z.: Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC 12 cells. Toxicology 267, 172–177 (2010)

    Article  CAS  Google Scholar 

  120. Binder, C.R., Quirici, R., Domnitcheva, S., Stäubli, B.: Smart labels for waste and resource management. J. Ind. Ecol. 12(2), 207–228 (2008)

    Article  Google Scholar 

  121. Luttropp, C., Johansson, J.: Improved recycling with life cycle information tagged to the product. J. Clean. Prod. 18, 346–354 (2010)

    Article  Google Scholar 

  122. Krook, J., Eklund, M.: The strategic role of recycling centres for environmental performance of waste management options. Appl. Ergon. (2010). doi:10.1016/j.aspergo.2009.06.012

  123. Hussain, S., Boland, S., Baeza-Squiban, A., Hamel, R., Thomassen, L.C.J., Martens, J.A., Billon-Galland, M.A., Fleury-Feith, J., Morsean, F., Pairon, J., Marano, F.: Oxidative stress and proinflammatory effects of carbon black and titaniumdioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 200, 142–149 (2009)

    Article  CAS  Google Scholar 

  124. Zhou, Q., Xanthos, M.: Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym. Degrad. Stab. 94, 327–338 (2009)

    Article  CAS  Google Scholar 

  125. Bottino, D.A., Di Pasquale, G., Fabbri, E., Orestano, A., Pollicino, A.: Influence of montmorillonite nano-dispersion on polystyrene photo-oxidation. Polym. Degrad. Stab. 94, 369–374 (2009)

    Article  CAS  Google Scholar 

  126. Morlat-Therias, S., Mailhot, B., Gonzalez, D., Gardette, J.: Photooxidation of polypropylene/montmorillonite nanocomposites. Interaction with anti-oxidants. Chem. Mater. 17, 1072–1078 (2005)

    Article  CAS  Google Scholar 

  127. Morlat-Therias, S., Fanton, E., Tomer, N.S., Rana, S., Singh, R.P., Gardette, J.: Photooxidation of vulcanized EPDM/montmorillonite nanocomposites. Polym. Degrad. Stab. 91, 3033–3039 (2006)

    Article  CAS  Google Scholar 

  128. Qin, H., Zhao, C., Zhang, S., Chen, G., Yang, M.: Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite. Polym. Degrad. Stab. 81, 497–500 (2003)

    Article  CAS  Google Scholar 

  129. Hong, S., Liao, C.: The surface oxidation of a thermoplastic olefin elastomer under ozone exposure: ATR analysis. Polym. Degrad. Stab. 49, 437–447 (1995)

    Article  CAS  Google Scholar 

  130. Pfaendner, R.: Nanocomposites: industrial opportunity or challenge? Polym. Degrad. Stab. 95, 369–373 (2010)

    Article  CAS  Google Scholar 

  131. Ramirez-Vargas, F., Navarro-Rodriguez, D., Blagueto-Menchaca, A.I., Huerta-Martinez, B.M., Palacios-Mezta, M.: Degradation effects on the rheological and mechanical properties of multi-extruded blends of impact modified polypropylene and poly(ethylene-a-vinylacetate). Polym. Degrad. Stab. 86, 301–307 (2004)

    Article  CAS  Google Scholar 

  132. Thompson, M.R., Yeung, K.K.: Recyclability of layered silicate-thermoplastic olefin elastomer nanocomposite. Polym. Degrad. Stab. 91, 2396–2407 (2006)

    Article  CAS  Google Scholar 

  133. Kumanayaka, T.O., Parthasarathy, R., Jollands, M.: Accelerating effect on montmorillonite oxidative degradation of polyethylene nanocomposites. Polym. Degrad. Stab. (2010). doi:10.1016/jpoldegradstab.2009.11.030

  134. Wang, Y., Chen, F., Li, Y., Wu, K.: Melt processing of polypropylene/clay nanocomposites modified with maleated polypropylene compatibilizers. Compos. B 35, 111–124 (2004)

    Article  CAS  Google Scholar 

  135. He, A., Wang, L., Yao, W., Huang, B., Wang, D., Han, C.C.: Structural design of imidazolium and its application in PP/montmorillonite nanocomposites. Polym. Degrad. Stab. (2010). doi:10.1016/jpolymerdegradstab.2009.12.003

  136. Gupta, S., Pallavi, M.B., Som, A., Krishnamurthy, R., Bhowmick, A.K.: Anomalous mechanical behavior upon recycling of poly(phenylene-ether)-based thermoplastic elastomer. Polym. Eng. Sci. 48, 496–504 (2008)

    Article  CAS  Google Scholar 

  137. Vilaplana, F., Karlsson, S.: Quality concepts for the improved use of recycled polymeric materials. Marcomol. Mater. Eng. 293, 274–297 (2008)

    Article  CAS  Google Scholar 

  138. Dementienko, O.V., Kuznetsova, O.P., Tikhonov, A.P., Prut, E.V.: The effect of dynamic vulcanization on the properties of polymer–elastomer blends containing crumb rubber. Polym. Sci. Ser. A 49, 1218–1225 (2007)

    Article  Google Scholar 

  139. Ghosh, A., Rajeev, R.S., Bhattacharya, A.K., Bhowmick, A.K., De, S.K.: Recycling of silicone rubber waste: effect of ground silicone rubber vulcanizate powder in the properties of silicone rubber. Polym. Eng. Sci. 43, 279–296 (2003)

    Article  CAS  Google Scholar 

  140. Grigoryeva, O.P., Fainleib, A.M., Tolstov, A.L., Starostenko, O.M., Lievana, E., Karger-Kocsis, J.: Thermoplastic elastomers base don recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber. J. Appl. Polym. Sci. 95, 659–671 (2005)

    Article  CAS  Google Scholar 

  141. Guo, A., Xiang, D., Duan, G., Mou, P.: A review of mechanochemistry applications in waste management. Waste Manage. 30, 4–10 (2010)

    Article  CAS  Google Scholar 

  142. Jacob, C., De, P.P., Bhowmick, A.K., De, S.K.: Recycling of EPDM waste. II. Replacement of virgin rubber by ground EPDM vulcanizate in EPDM/PP thermoplastic elastomeric composition. J. Appl. Polym. Sci. 82, 3304–3312 (2001)

    Article  CAS  Google Scholar 

  143. Neto, J.R.A., Visconte, L.L.Y., Tavares, M.I.B., Pacheco, E.B.A.V., Futrado, C.R.G.: Regeneration of vulcanized compounds based on butadiene-styrene copolymer. Int. J. Polym. Mater. 56, 565–578 (2007)

    Article  CAS  Google Scholar 

  144. Susanto, P., Picchioni, F., Janssen, L.P.B.M., Dijkhuis, K.A.J., Dierkes, W.K., Noordermeer, J.W.M.: EPDM rubber reclaim from devulcanized EPDM. J. Appl. Polym. Sci. 102, 5948–5957 (2006)

    Article  CAS  Google Scholar 

  145. Shim, S.E., Isayev, I., von Meerwall, E.: Molecular mobility of ultrasonically devulcanized silica-filled poly (dimethylsiloxane). J. Polym. Sci. B 41, 454–465 (2003)

    Article  CAS  Google Scholar 

  146. Meszaros, L., Tabi, T., Kovacs, J.G., Barany, T.: The effect of EVA content on the processing parameters and the mechanical properties of LDPE/ground tire rubber blends. Polym. Eng. Sci. 868–874 (2008). doi:10.1002/pen.21022

  147. Mnif, N., Massardier, V., Kallel, T., Elleuch, B.: Study of the modification of properties of PP/EPR blends with a view to preserving natural resources when elaborating new formulation and recycling polymers. Polym. Compos. 805–811 (2009). doi:10.1002/pc

  148. Molero, C., de Lucas, A., Rordiguez, J.F.: Recovery of polyols from flexible polyurethane by ‘split-phase’ glycolysis with new catalysts. Polym. Degrad. Stab. 91, 894–901 (2006)

    Article  CAS  Google Scholar 

  149. Molero, C., de Lucas, A., Rordiguez, J.F.: Recovery of polyols for flexible polyurethane foam by splits phase glycolysis; study on the influence of reaction parameters. Polym. Degrad. Stab. 93, 353–361 (2008)

    Article  CAS  Google Scholar 

  150. Molero, C., de Lucas, A., Rodriguez, J.P.: Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with di-ethylene glycol. Polym. Degrad. Stab. 94, 533–539 (2009)

    Article  CAS  Google Scholar 

  151. Watando, H., Say, S., Fakaya, T., Fujieda, S., Yamamoto, M.: Improving chemical recycling rate by reclaiming polyurethane elastomer form polyurethane foam. Polym. Degrad. Stab. 91, 3354–3359 (2006)

    Article  CAS  Google Scholar 

  152. Wu, C., Chang, C., Cheng, C., Huang, H.: Glycolysis of waste flexible polyurethane foam. Polym. Degrad. Stab. 80, 103–111 (2003)

    Article  CAS  Google Scholar 

  153. Hashimoto, T., Mori, H., Urushisaki, M.: Poly(tetramethylene ether) glycol containing acetal linkages: mew PTMG-based polyol for chemically recyclable polyurethane thermoplastic elastomer. J. Polym. Sci. A 46, 1893–1901 (2008)

    Article  CAS  Google Scholar 

  154. Grancharov, G., Mitoba, V., Shenkov, S., Topliyska, A., Gitsov, I., Toev, K.: Smart polymer recycling: synthesis of novel polyurethanes using phosphorus-containing ologomers formed by controlled degradation of microporous polyurethane elastomer. J. Appl. Polym. Sci. 105, 302–308 (2007)

    Article  CAS  Google Scholar 

  155. Cheul-Kyu, L., Yong-Ki, K., Phirada, P., Jung-Suk, K., Kun-Mo, L., Chang-Sik, J.: Assessing environmentally friendly recycling methods for composite bodies of railway rolling stock using life-cycle analysis. Transp. Res. D (2010). doi:10.1016/jtrd.2010.02.001

  156. Pinero-Hernanz, R., Garcia-Serna, J., Dodds, C., Hyde, J., Poliakoff, M., Cocero, M.J., Kingman, S., Pickering, S., Lester, E.: Chemical recycling of carbon fibres composites using alcohols under subcritical and supercritical conditions. J. Supercrit. Fluids 46, 83–92 (2008)

    Article  CAS  Google Scholar 

  157. Yuyan, L., Gohua, S., Linhui, M.: Recycling of carbon fibre reinforced composites using water in subcritical condition. Mater. Sci. Eng. A 520, 179–183 (2009)

    Article  CAS  Google Scholar 

  158. Im, E.J., Kim, S.H., Lee, K.: Optimization of pyrolysis conditions of polyurethane recycling of solid products. J. Anal. Appl. Pyrol. 82, 184–190 (2008)

    Article  CAS  Google Scholar 

  159. Kaminsky, W., Predel, M., Sadiki, A.: Feedstock recycling of polymers by recycling in a fluidized bed. Polym. Degrad. Stab. 85, 1045–1050 (2004)

    Article  CAS  Google Scholar 

  160. Wollny, V., Dehoust, G., Fritsche, U.R., Weinem, P.: Comparison of plastic packaging waste management options: feedstock recycling versus energy recovery in Germany. J. Ind. Ecol. 5(3), 49–63 (2008)

    Article  Google Scholar 

  161. Keane, M.A.: Catalytic transformation of waste polymers to fuel oil. ChemSusChem 2, 207–214 (2009)

    Article  CAS  Google Scholar 

  162. Gilman, J.W.: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)

    Article  CAS  Google Scholar 

  163. Gilman, J.W., Harris Jr, R.H., Shields, J.R., Kashiwagi, T., Morgan, A.B.: A study of flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char. Polym. Adv. Technol. 17, 263–271 (2006)

    Article  CAS  Google Scholar 

  164. Holmes, R.L., Campbell, J.A., Burford, R.P., Katchevseva, I.: Pyroysis behaviour of titanium dioxide-poly(vinyl pyrrolidone) composite materials. Polym. Degrad. Stab. 94, 1882–1889 (2009)

    Article  CAS  Google Scholar 

  165. Lewicki, J.P., Liggat, J.J., Patel, M.: The thermal degradation behaviour of polydimethylsiloxane/monymorillonite nanocomposites. Polym. Degrad. Stab. 94, 1548–1557 (2009)

    Article  CAS  Google Scholar 

  166. Peng, Z., Kong, L.X.: A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stab. 92, 1061–1071 (2007)

    Article  CAS  Google Scholar 

  167. Semenzato, S., Lorenzetti, A., Modesti, M., Ugel, E., Hrelja, D., Besco, S., Michelin, R.A., Sassi, A., Facchin, G., Zorzi, F., Bertani, R.: A novel phosphorous polyurethane foam/montmorillonite nanocomposite: preparation, characterization and thermal behaviour. Appl. Clay Sci. 44, 35–42 (2009)

    Article  CAS  Google Scholar 

  168. Zhang, J., Cui, P., Tian, X., Zheng, K.: Pyrolysis studies of polyethylene terephthalate/silica nanocomposites. J. Appl. Polym. Sci. 104, 9–14 (2007)

    Article  CAS  Google Scholar 

  169. Sasse, F., Emig, G.: Chemical recycling of polymers. Chem. Eng. Technol. 21, 777–789 (1998)

    Article  CAS  Google Scholar 

  170. Mark, J.E.: Some interesting things about polysiloxanes. Acc. Chem. Res. 27, 346–353 (2004)

    Google Scholar 

  171. Hansen, S.F., Maynard, A., Baun, A., Tickner, J.A.: Late lessons from early warnings for nanotechnology. Nat. Nanotechnol. 3, 444–447 (2008)

    Article  CAS  Google Scholar 

  172. Reijnders, L.: Hazard reduction in nanotechnology. J. Ind. Ecol. 12, 297–306 (2008)

    Article  CAS  Google Scholar 

  173. Fadeel, B., Garcia-Bennett, A.E.: Better safe than sorry: understanding toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. (2010). doi:10.1016/addr.2009.11.006

  174. He, X., Liu, F., Wang, K., Ge, J., Qin, D., Gong, P., Yan, W.: Bioeffects of different functionalized silica nanoparticles on HeCaT cell line. Chin. Sci. Bull. 51, 1939–1946 (2008)

    Article  CAS  Google Scholar 

  175. Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42, 7528–7534 (2008)

    Article  CAS  Google Scholar 

  176. Tong, H., McGee, J.K., Saxens, R.K., Kodavanti, U., Devlin, R.B., Gilmour, M.I.: Influence of acid functionalization on cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol. Appl. Pharmacol. 239, 224–232 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Reijnders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reijnders, L. (2011). Recycling of Elastomeric Nanocomposites. In: Mittal, V., Kim, J., Pal, K. (eds) Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15787-5_7

Download citation

Publish with us

Policies and ethics