Skip to main content

An Experimental Study of Quartets MaxCut and Other Supertree Methods

  • Conference paper
Algorithms in Bioinformatics (WABI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6293))

Included in the following conference series:

Abstract

Although many supertree methods have been developed in the last few decades, none has been shown to produce more accurate trees than the popular Matrix Representation with Parsimony (MRP) method. In this paper, we evaluate the performance of several supertree methods based upon the Quartets MaxCut method of Snir and Rao. We show that two of these methods usually outperform MRP and all other supertree methods we studied under many realistic model conditions. In addition, we show that the popular criterion of minimizing the total topological distance to the source trees is only weakly correlated with topological accuracy, and therefore that evaluating supertree methods on biological datasets is problematic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal, M., Burleigh, J.G., Eulenstein, O., Fernández-Baca, D.: Robinson-foulds supertrees (2009)

    Google Scholar 

  2. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  3. Ben-dor, A., Chor, B., Graur, D., Ophir, R., Pelleg, D.: Constructing phylogenies from quartets: Elucidation of eutherian superordinal relationships. Journal of Computational Biology 5(3), 377–390 (1998), Earlier version appeared in RECOMB 1998 (1998)

    Google Scholar 

  4. Bininda-Emonds, O.R.P.: The evolution of supertrees. Trends in Ecology and Evolution 19, 315–322 (2004)

    Article  PubMed  Google Scholar 

  5. Bininda-Emonds, O.R.P.: Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life. Computational Biology. Kluwer Academic, Dordrecht (2004)

    Book  Google Scholar 

  6. Bolaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  7. Burleigh, J.G., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: MRF supertrees. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information To Reveal The Tree Of Life, pp. 65–86. Kluwer Academic, Dordrecht (2004)

    Chapter  Google Scholar 

  8. Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J.: Flipping: a supertree construction method. In: Bioconsensus. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, vol. 61, pp. 135–160. American Mathematical Society-DIMACS, Providence (2003)

    Chapter  Google Scholar 

  9. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for minimum-flip supertree construction. Evol. Bioinform. 2, 401–410 (2006)

    CAS  Google Scholar 

  10. Creevey, C.J., McInerney, J.O.: Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21(3), 390–392 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. Dress, A., Steel, M.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)

    Article  Google Scholar 

  12. Foulds, L.R., Graham, R.L.: The steiner problem in phylogeny is NP-complete. Adv. in Appl. Math. 3(43-49), 299 (1982)

    Google Scholar 

  13. Holland, B., Conner, G., Huber, K., Moulton, V.: Imputing supertrees and supernetworks from quartets. Syst. Biol. 57(1), 299–308 (2007)

    Google Scholar 

  14. Jiang, T., Kearney, P., Li, M.: Orchestrating quartets: approximation and data correction. In: Motwani, R. (ed.) Proceedings of the 39th IEEE Annual Symposium on Foundations of Computer Science, Los Alamitos, CA., pp. 416–425 (1998)

    Google Scholar 

  15. Jiang, T., Kearney, P., Li, M.: A polynomial-time approximation scheme for inferring evolutionary trees from quartet topologies and its applications. SIAM J. Comput. 30(6), 1924–1961 (2001)

    Article  Google Scholar 

  16. John, K.S., Warnow, T., Moret, B.M.E., Vawter, L.: Performance study of phylogenetic methods: (unweighted) quartet methods and neighbor-joining. Journal of Algorithms 48, 173–193 (2003)

    Google Scholar 

  17. Nixon, K.C.: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414 (1999)

    Article  Google Scholar 

  18. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylo. Evol. 1, 53–58 (1992)

    Article  CAS  Google Scholar 

  19. Ranwez, V., Berry, V., Criscuolo, A., Fabre, P.H., Guillemot, S., Scornavacca, C., Douzery, E.J.P.: PhySIC: a veto supertree method with desirable properties. Syst. Biol. 56(5), 798–817 (2007)

    Article  PubMed  Google Scholar 

  20. Ranwez, V., Gascuel, O.: Quartet-Based phylogenetic inference: Improvements and limits. Mol. Biol. Evol. 18(6), 1103–1116 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Snir, S., Rao, S.: Quartets MaxCut: a divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. (2008)

    Google Scholar 

  22. Snir, S., Warnow, T., Rao, S.: Short quartet puzzling: A new Quartet-Based phylogeny reconstruction algorithm. J. Comput. Biol. 15(1), 91–103 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Stamatakis, A.: RAxML-NI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Strimmer, K., von Haeseler, A.: Quartet puzzling: A quartet maximim-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13(7), 964–969 (1996)

    Article  CAS  Google Scholar 

  25. Swenson, M.S., Barbançon, F., Warnow, T., Linder, C.R.: A simulation study comparing supertree and combined analysis methods using SMIDGen. Algorithms for Molecular Biology 5, 8 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurrency and Computation: Practice and Experience 17, 323–356 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swenson, M.S., Suri, R., Linder, C.R., Warnow, T. (2010). An Experimental Study of Quartets MaxCut and Other Supertree Methods. In: Moulton, V., Singh, M. (eds) Algorithms in Bioinformatics. WABI 2010. Lecture Notes in Computer Science(), vol 6293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15294-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15294-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15293-1

  • Online ISBN: 978-3-642-15294-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics