Skip to main content

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

We survey and present new results and techniques for the supertree method matrix representation using flipping (MRF). The method resolves inconsistencies among the input trees by working with the matrix representations of the clusters exhibited by the input trees. All inconsistencies between the clusters in the matrix are resolved by a minimum number of flips, where each flip moves a taxon into or out of a cluster. The resulting clusters form an MRF supertree. We present an empirical study of MRF supertrees, where input trees for the study were selected out of a large tree set using a novel graph-theoretic sampling technique that maximizes the taxon support in the resulting supertrees. This study suggests, as do simulation studies, that MRF supertrees are relatively accurate when compared to matrix representation with parsimony supertrees, MinCutSupertrees, and modified MinCutSupertrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E. M., III. 1972. Consensus techniques and the comparison of taxonomic trees. Systematic Zoology 21:390–397.

    Article  Google Scholar 

  • Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1976. On finding lowest common ancestors in trees. SIAM Journal on Computing 1:115–132.

    Article  Google Scholar 

  • Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. 1981. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10:405–421.

    Article  Google Scholar 

  • Alexe, G., Alexe, S., Foldes, S., Hammer, P. L., and Simeone, B. 2000. Consensus Algorithms for the Generation of all Maximal Bicliques. Technical Report 2000–14, Rutgers University.

    Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Böcker, S., Bryant, D., Dress, A. W. M., and Steel, M. A. 2000. Algorithmic aspects of tree amalgamation. Journal of Algorithms 37:522–537.

    Article  Google Scholar 

  • Bremer, K. 1990. Combinable component consensus. Cladistics 9:369–372.

    Article  Google Scholar 

  • Bremer K., Chase M. W., Stevens P. F., Anderberg A. A., Backlund A., Bremer B., Briggs B. G., Endress P. K., Fay M. F., Goldblatt P., Gustafsson M. H. G., Hoot S. B., Judd W. S., Källersjö M., Kellogg E. A., Kron K. A., Les D. H., Morton C. M., Nickrent D. L., Olmstead R. G., Price R. A., Quinn C. J., Rodman J. E., Rudall P. J., Savolainen V., Soltis D. E., Soltis P. S., Sytsma K. J., and Thulin M. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanic Garden 85:531–553.

    Article  Google Scholar 

  • Brooks, D. R. 1981. Hennig ’s parasitological method: a proposed solution. Systematic Zoology 30:325–331.

    Article  Google Scholar 

  • Bryant, D. 2003. A classification of consensus methods for phylogenetics. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 163–184. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Chen, D., Diao, L., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2003. Flipping: a supertree construction method. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 135–160. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Chen, D., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2002a. Supertrees by Flipping. Technical Report TR02–01, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA 50011–1040, USA.

    Google Scholar 

  • Chen, D., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2002b. Supertrees by flipping. In Ibarra, O. H. and L. Zhang (eds), Computing and Combinatorics, 8th Annual International Conference, Cocoon 2002, Singapore, August 15–17, 2002, Proceedings, Lecture Notes in Computer Science 2387:391–400. Springer, New York.

    Google Scholar 

  • Diao, L., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2003. Consensus Properties of MRP Supertrees. Technical Report, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA 50011–1040, USA.

    Google Scholar 

  • Downey, R. G. and Fellows, M. R. 1997. Parameterized Complexity. Springer, New York.

    Google Scholar 

  • Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144–163.

    Article  Google Scholar 

  • Estabrook, G. F., Johnson, C., and McMorris, F. R. 1975. An idealized concept of the true cladistic character? Mathematical Biosciences 23:263–272.

    Article  Google Scholar 

  • Eulenstein, O., Chen, D., Burleigh, J. G., Fernandez-Baca, D., and Sanderson, M. J. In press. Performance of flip-supertrees. Systematic Biology.

    Google Scholar 

  • Farach, M., Przytycka, T., and Thorup, M. 1995. Agreement of many bounded degree evolutionary trees. Information Processing Letters 55:279–301.

    Article  Google Scholar 

  • Gatesy, J., Matthee, C., Desalle, R., and Hayahi, C. 2002. Resolution of a supertree / supermatrix paradox. Systematic Biology 51:652–664.

    Article  PubMed  Google Scholar 

  • Gatesy, J. and Springer, M. S. 2004. A critique of matrix representation with parsimony supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 369–388. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Sciences and Computational Biology. Cambridge University Press, New York.

    Book  Google Scholar 

  • Henzinger, M. R., King, V., and Warnow, T. 1999. Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24:1–13.

    Article  Google Scholar 

  • Kearney, P., Li, M., Tsang, J., and Jiang, T. 1999. Recovering branches on the tree of life: an approximation algorithm. In R. E. Tarjan and T. Warnow (eds), Symposium on Discrete Algorithms. Proceedings of the Tenth Annual Acm-Siam Symposium on Discrete Algorithms, pp. 537–546. Society for Industrial and Applied Mathematics, Philadelphia, Pa.

    Google Scholar 

  • Magallón, S. and Sanderson, M. J. 2001. Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780.

    PubMed  Google Scholar 

  • Mathews, S. and Donoghue, M. J. 1999. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286:947–950.

    Article  PubMed  CAS  Google Scholar 

  • Natanzon, A., Shamir, R., and Sharan, R. 2001. Complexity classification of some edge modification problems. Discrete Applied Mathematics 113:109–128.

    Article  Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Proceedings of the Second International Workshop on Algorithms in Bioinformatics Wabi 2002, pp. 537–552, Springer-Verlag, New York.

    Google Scholar 

  • Pe’Er, I., Shamir, R., and Sharan, R. 2000. Incomplete directed perfect phylogeny. In D. Sankoff (ed.), Proceedings of the Eleventh Symposium on Combinatorial Pattern Matching Cpm, Lecture Notes in Computer Science 1848:143–153. Springer, New York.

    Chapter  Google Scholar 

  • Peeters, R. 2000. The maximum-edge biclique problem is NP-complete. Research Memorandum 789, Faculty of Economics and Business Administration, Tilberg University.

    Google Scholar 

  • Purvis, A. 1995. A modification to Baum and Ragan’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Qiu, Y. L., Lee, J., Bernasconi-Quadroni, F., Soltis, D. E., Soltis, P. S., Zanis, M., Zimmer, E. A., Cihen, Z., Savolainen, V., and Chase, M. W. 1999. The earliest angiosperms: evidence from mitochondrial, plastid, and nuclear genomes. Nature 402:404–407.

    Article  PubMed  CAS  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Ross, H. A. and Rodrigo, A. G. 2004. An assessment of matrix representation with compatibility in supertree construction. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 35–63. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Sanderson, M. J. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Snedecor, G. W. and Cochran, W. G. 1995. Statistical Methods, 8th ed. Iowa State University Press, Ames, Ia.

    Google Scholar 

  • Soltis, P. S., Soltis, D. E., Chase, M. W., Mort, M. E., Albach, D. C., Zanis, M. J., Savolainen, V., Hahn, W. H., Hoot, S. B., Fay, M. F., Axtell, D. C., Swenson, S. M., Prince, L. M., Kress, W. J., Nixon, K. C., and Farris, J. S. 2000. Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL, and atpB sequences. Botanical Journal of Linnean Society 133:381–461.

    Google Scholar 

  • Sullivan, J. and Swofford, D. L. 2001. Should we use model-based methods for phylogenetic inference when we know that assumptions about among-site rate variation and nucleotide substitution pattern are violated? Systematic Biology 50:723–729.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent? In M. M. Miyamoto and J. Cracraft (eds), Phylogenetic Analysis of DNA Sequences, pp. 295–333. Oxford University Press, Oxford.

    Google Scholar 

  • Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Yannakakis, M. 1981. Computing the minimum fill-in is NP-complete. Siam Journal on Algebraic and Discrete Methods 2:77–79.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burleigh, J.G., Eulenstein, O., Fernández-Baca, D., Sanderson, M.J. (2004). MRF Supertrees. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics