Skip to main content

Biological Phosphorus Cycling in Grasslands: Interactions with Nitrogen

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

The complexity of soil–plant–animal interactions in grassland ecosystems highlights the importance of studying biological phosphorus (P) cycling in relation with that of nitrogen (N). Several case studies employing original approaches developed by both agronomists and ecologists are presented. The nutrition index approach, based on nutrient dilution in the process of biomass accumulation, is used in order to evaluate the relative response of grassland to P in relation to changes in nutritional status (N and P). In parallel, the functional characterization of grassland vegetation from plant functional type (PFT) definition is presented. It relies on the fact that grassland communities may contain a wide diversity of species that influence nutrient biological cycling and regulate the biogeochemical cycle of nutrients. Finally, the effect of grazing herbivores on the biogeochemical cycle of major elements is examined to give a better insight into the complexity of the processes associated with N and P cycles in grazed grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbot LK, Murphy DV (2003) What is soil biological fertility? In: Abbot LK, Murphy DV (eds) Soil biological fertility. A key to sustainable land use in agriculture. Kluwer, Dordrecht, pp 1–15

    Google Scholar 

  • Allard V, Newton PC, Lieffering M, Clark H, Matthew C, Soussana JF, Gray IS (2003) Nitrogen cycling in grazed pastures at elevated CO2: N returns by ruminants. Glob Change Biol 9:1731–1742

    Article  Google Scholar 

  • Ambus P, Petersen SO, Soussana JF (2007) Short-term carbon and nitrogen cycling in urine patches assessed by combined carbon-13 and nitrogen-15 labeling. Agric Ecosyst Environ 121:84–92

    Article  CAS  Google Scholar 

  • Andersen T (1997) Pelagic nutrient cycles, herbivores as sources and sinks. Ecological studies, vol 129. Springer, Berlin

    Book  Google Scholar 

  • Ansquer P, Theau JP, Cruz P, Viegas J, Al Haj Khaled R, Duru M (2004) Caractérisation de la diversité fonctionnelle des prairies à flore complexe, vers la construction d'outils de gestion. Fourrages 179:353–368

    Google Scholar 

  • Ansquer P, Al Haj Khaled R, Cruz P, Theau JP, Therond O, Duru M (2009a) Characterizing and predicting plant phenology in species-rich grasslands. Grass Forage Sci 64:57–70

    Article  Google Scholar 

  • Ansquer P, Duru M, Theau JP, Cruz P (2009b) Functional traits as indicators of fodder provision over a short time scale in species-rich grasslands. Ann Bot 103:117–126

    Article  PubMed  Google Scholar 

  • Ansquer P, Duru M, Theau JP, Cruz P (2009c) Convergence in plant traits between species with grassland communities simplifies their monitoring. Ecol Indic 9:1020–1029

    Article  CAS  Google Scholar 

  • Attard E, Degrange V, Klumpp K, Richaume A, Soussana JF, Le Roux X (2008) How do grassland management history and bacterial micro-localization affect the response of bacterial community structure to changes in aboveground grazing regime? Soil Biol Biochem 40:1244–1252

    Article  CAS  Google Scholar 

  • Augustine DJ (2003) Long-term, livestock-mediated redistribution of nitrogen and phosphorus in a East African savanna. J Appl Ecol 40:137–149

    Article  Google Scholar 

  • Augustine DJ, Frank DA (2001) Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82:3149–3162

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9:1242–1256

    Article  CAS  Google Scholar 

  • Aulack MS, Malhi SS (2005) Interactions of nitrogen with other nutrients and water: effect on crop yield and quality, nutrient use efficiency, carbon sequestration, and environmental pollution. Adv Agron 86:341–409

    Article  Google Scholar 

  • Aydin I, Uzun F (2005) Nitrogen and phosphorus fertilization of rangeland affects yield, forage quality and botanical composition. Eur J Agron 23:8–14

    Article  CAS  Google Scholar 

  • Bailey JS, Dills RA, Foy RH, Patterson D (2000) The diagnosis and recommendation system (DRIS) for diagnosing the nutrient status of grassland swards. III. Practical applications. Plant Soil 222:255–262

    Article  CAS  Google Scholar 

  • Barthram GT, Grant SA, Elston DA (1992) The effects of sward height and nitrogen fertilizer application on changes in sward composition, white clover growth and the stock carrying capacity of an upland perennial ryegrass/white clover sward grazed by sheep for four years. Grass Forage Sci 47:326–341

    Article  Google Scholar 

  • Bélanger G, Richards JE, Walton RB (1989) Effects of 25years of N, P and K fertilization on yield, persistence and nutritive value of timothy sward. Can J Plant Sci 69:501–512

    Article  Google Scholar 

  • Berendse F, Aerts R (1987) Nitrogen-use-efficiency: a biologically meaningful definition? Funct Ecol 1:293–296

    Google Scholar 

  • Carline KA, Jones HE, Bardgett RD (2005) Large herbivores affect the stoichiometry of nutrients in a regenerating woodland ecosystem. Oikos 110:453–460

    Article  CAS  Google Scholar 

  • Critchley CNR, Chambers BJ, Fowbert JA, Bhogal A, Rose SC, Sanderson RA (2002) Plant species richness, functional type and soil properties of grasslands and allied vegetations in English environmentally sensitive areas. Grass Forage Sci 57:82–92

    Article  Google Scholar 

  • Cruz P, Soussana JF (1997) Mixed crops. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin, pp 130–144

    Google Scholar 

  • Daufresne T, Loreau M (2001) Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol Lett 4:196–206

    Article  Google Scholar 

  • De Mazancourt C, Loreau M, Abbadie L (1998) Grazing optimization and nutrient cycling: when do herbivores enhance plant production? Ecology 79:2242–2252

    Article  Google Scholar 

  • De Mazancourt C, Loreau M, Abbadie L (1999) Grazing optimization and nutrient cycling: potential impact of large herbivores in a savanna system. Ecol Appl 9:784–797

    Article  Google Scholar 

  • Duru M (1992) Diagnostic de la nutrition minérale de prairies permanentes au printemps. I. Etablissement de références. Agronomie 12:219–233

    Article  Google Scholar 

  • Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield for permanent pastures. Nutr Cycl Agroecosys 47:59–69

    Article  Google Scholar 

  • Duru M, Thélier-Huché L (1997) N and PK status of herbage: use for diagnosis of grasslands. Diagnostic procedures for crop N management, Les Colloques, n° 82, éd. INRA, Paris, 125–138

    Google Scholar 

  • Duru M, Thélier-Huché L (1997) N and PK status of herbage: use for diagnosis of grasslands. In: Lemaire G, Burns IG (eds) Diagnostic procedure for crop N management. Les colloques 82. INRA, Paris, pp 125–138

    Google Scholar 

  • Duru M, Lemaire G, Cruz P (1997) Grasslands, Lemairen G, Burnsed IG éd, Diagnosis of the nitrogen status in crops, Springer-Verlag pp 59–72

    Google Scholar 

  • Duru M, Lemaire G, Cruz P (1997) Grasslands. In: Lemaire G, Burns IG (eds) Diagnostic procedures for crop N management. Les colloques 82. INRA, Paris, pp 130–144

    Google Scholar 

  • Duru M, Cruz P, Jouany C, Theau JP (2000) Intérêt pour le conseil, du diagnostique de nutrition azotée de prairies de graminées par analyse de plante. Fourrages 164:381–395

    Google Scholar 

  • Ehlert P, Morel C, Fotyma M, Destain JP (2003) Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J Plant Nutr Soil Sci 166:409–415

    Article  CAS  Google Scholar 

  • Elser J, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith E (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fagan KC, Pywell RF, Bullock JM, Marrs RH (2008) Do restored calcareous grasslands on former arable fields resemble ancient targets? The effect of time, methods and environment on outcomes. J Appl Ecol 45:1293–1303

    Article  Google Scholar 

  • Fortunel C, Garnier E, Joffre R, Kazakou E, Quested E, Grigulis K, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Freitas H, Golodets C, Jouany C, Kigel J, Kleyer M, Lehstein V, Leps J, Meir T, Pakeman R, Papadimitriou M, Papanastasis VP, Quetier F, Robson M, Sternberg M, Theau JP, Thebault A, Zarovali M (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611

    Article  PubMed  Google Scholar 

  • Frank DA (2008) Ungulate and topographic control of nitrogen:phosphorus stoichiometry in temperate grassland; soils, plants and mineralization rates. Oikos 117:591–601

    Article  CAS  Google Scholar 

  • Frank DA, Groffman PM (1998) Ungulate vs. landscape control of soil C and N processes in grasslands of Yellowstone National Park. Ecology 79:2229–2241

    Article  Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reaction controlling the cycling of P in soil. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, pp 107–138

    Google Scholar 

  • Gillet F, Kohler F, Vandenberghe C, Buttler A (2010) Effect of dung deposition on small-scale patch structure and seasonal vegetation dynamics in mountain pastures. Agric Ecosyst Environ 135:34–41

    Article  Google Scholar 

  • Gitay H, Noble IR (1997) What are plant functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Goldberg DE (1997) Competitive ability: definitions, contingency and related traits. In: Silverstown J, Franco M, Harper JL (eds) Plant life histories. Cambridge University Press, Cambridge, pp 283–306

    Google Scholar 

  • Gonzales-Dugo V, Durand JL, Gastal F, Picon-Cochard C (2005) Short term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Aust J Agric Res 56:1269–1276

    Article  Google Scholar 

  • Griffin T, Giberson E, Wiedenhoeft M (2002) Yield response of long-term mixed grassland swards and nutrient cycling under different nutrient sources and management regimes. Grass Forage Sci 57:268–278

    Article  Google Scholar 

  • Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional signifiance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S, Jewell PJ, Edwards PJ (2005) Effects of heterogeneous habitat use by cattle on nutrient availability and litter decomposition in soils of an Alpine pasture. Plant Soil 268:135–149

    Article  Google Scholar 

  • Haynes RJ, Ludecke TE (1981) Yield, root morphology and chemical composition of two pasture legumes as affected by lime and phosphorus applications to an acid soil. Plant Soil 62:241–254

    Article  CAS  Google Scholar 

  • Henkin Z, Noy-Meir I, Kafkafi U, Seligman N (1996) Phosphate fertilization primes production of rangeland on brown rendzina soils in the Galilee, Israel. Agric Ecosyst Environ 59:43–53

    Article  Google Scholar 

  • Hinsinger P (1998) How do plant acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manage 60(4):695–713

    Article  Google Scholar 

  • Høgh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753

    Article  PubMed  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 272:1302–1305

    Article  Google Scholar 

  • Janssens F, Peeters A, Tallowin JRB, Bakker JP, Bekker RM, Fillat F, Oomes MJM (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202:69–78

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77

    Article  Google Scholar 

  • Jouany C, Cruz P, Petibon P, Duru M (2004) Diagnosing phosphorus status of natural grassland in the presence of white clover. Eur J Agron 1:273–285

    Article  Google Scholar 

  • Laidlaw AS, Withers JA (1998) Changes in contribution of white clover to canopy structure in perennial ryegrass/white clover swards in response to N fertilizer. Grass Forage Sci 53:287–291

    Article  Google Scholar 

  • Lajtha K, Harrison AF (1995) Strategies of phosphorus acquisition and conservation by plant species and communities. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, pp 139–147

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith GE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Berlin, pp 3–43

    Chapter  Google Scholar 

  • Lemaire G, Gastal F, Salette J (1989) Analysis of the effect of N nutrition on dry matter yield of a sward by reference to potential yield and optimum N content. In: Proceedings XVI International Grassland Congress, Nice, pp 179–180

    Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804

    Article  CAS  Google Scholar 

  • Loeppky HA, Horton PR, Bittman S, Townley-Smith L, Wright T, Nuttall WF (1999) Forage seeds yield response to N and P fertilizers and soil nutrients in Northeastern Saskatchewan. Can J Soil Sci 79:265–271

    Article  Google Scholar 

  • Loiseau P, Soussana JF, Louault F, Delpy R (2001) Soil N contributes to the oscillations of the white clover content in mixed swards of perennial ryegrass under conditions that simulate grazing over years. Grass Forage Sci 56:205–217

    Article  CAS  Google Scholar 

  • Marriot CA, Fothergill M, Jeangros B, Scotton M, Louault F (2004) Long term impacts of extensification of grassland management on biodiversity and productivity in upland areas. Agronomie 24:447–462

    Article  Google Scholar 

  • Mackay AD, Saggar S, Trolove SN, Lambert MG (1995) Use of an unsorted pasture sample in herbage testing for sulphur, phosphorus and nitrogen. New Zeal J Agr Res 38:483–493

    Google Scholar 

  • Martiniello P, Berardo N (2007) Residual fertilizer effects on dry-matter yield and nutritive value of Mediterranean pastures. Grass Forage Sci 62:87–99

    Article  CAS  Google Scholar 

  • McCrea AR, Trueman IC, Fullen MA (2004) Factors relating to soil fertility and species diversity in both semi-natural and created meadows in the West Midlands of England. Eur J Soil Sci 55:335–348

    Article  Google Scholar 

  • Mikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI (2001) Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92:333–343

    Article  Google Scholar 

  • Mills A, Moot DJ, Jamieson PD (2009) Quantifying the effect of nitrogen on productivity of cocksfoot (Dactylis glomerata L.) pastures. Eur J Agron 30:63–69

    Article  CAS  Google Scholar 

  • Nevens F, Rehuel D (2003) Effects of cutting or grazing grass swards on herbage yield, nitrogen uptake and residual soil nitrate at different levels of N fertilization. Grass Forage Sci 58:431–449

    Article  CAS  Google Scholar 

  • Olde Venterink H, van der Vliet RE, Wassen MJ (2001) Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234:171–179

    Article  CAS  Google Scholar 

  • Orwin KH, Bertram JE, Clough TJ, Condron LM, Sherlock RR, O'Callaghan M, Ray J, Baird DB (2010) Impact of bovine urine deposition on soil microbial activity, biomass, and community structure. Appl Soil Ecol 44:89–100

    Article  Google Scholar 

  • Parfitt RL, Yeates GW, Ross DJ, Mackay AD, Budding PJ (2005) Relationships between biota, nitrogen and phosphorus availability, and pasture growth under organic and conventional management. Appl Soil Ecol 28:1–13

    Article  Google Scholar 

  • Pastor J, Dewey B, Caiman RJ, McInnes PF, Cohen Y (1993) Moose browsing and soil fertility in the boreal forests of Isle Royale national park. Ecology 74(2):467–480

    Article  Google Scholar 

  • Pinkerton A, Randall PJ (1994) Internal phosphorus requirement of six legumes and two grasses. Aust J Exp Agric 34:373–379

    Article  CAS  Google Scholar 

  • Ritchie ME, Tilman D, Knops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79:165–177

    Article  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723

    Article  Google Scholar 

  • Schärer M, Stamm C, Vollmer T, Frossard E, Oberson A, Flühler H, Sinaj S (2007) Reducing phosphorus losses from over-fertilized grassland soils proves difficult in the short term. Soil Use Manage 23:154–164

    Article  Google Scholar 

  • Schellberg J, Möseler BM, Kühbauch W, Rademacher IF (1999) Long-term effects of fertilizer on soil nutrient concentration, yield, forage quality and floristic composition of a hay meadow in the Eifel mountains, Germany. Grass Forage Sci 54:195–207

    Article  CAS  Google Scholar 

  • Snyman HA (2002) Short term response of rangeland botanical composition and productivity to fertilization (N and P) in a semi-arid climate of South Africa. J Arid Environ 50:167–183

    Article  Google Scholar 

  • Sørensen LI, Mikola J, Kytöviita MM, Olofssson J (2009) Trampling and spatial heterogeneity explain decomposer abundances in a sub-arctic grassland subjected to simulated reindeer grazing. Ecosystems 12:830–842

    Article  Google Scholar 

  • Stark S, Kytöviita MM (2006) Simulated grazer effects on microbial respiration in a subarctic meadow: implications for nutrient competition between plants and soil microorganisms. Appl Soil Ecol 31:20–31

    Article  Google Scholar 

  • Sterner RW (1990) The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am Nat 136:209–229

    Article  Google Scholar 

  • Stroia C (2007) Etude de fonctionnement de l’écosystème prairial en conditions de nutrition N et P sub limitantes. Application au diagnostic de nutrition. PhD thesis, Institut National Polytechnique, Toulouse. http://ethesis.inp-toulouse.fr/archive/00000489/. Accessed 3 Aug 2010

  • Stroia C, Morel C, Jouany C (2007) Dynamics of diffusive soil phosphorus in two grassland experiments determined both in field and laboratory conditions. Agric Ecosyst Environ 19:60–74

    Article  Google Scholar 

  • Thélier-Huché L, Farrugia A, Castillon P (1999) L’analyse d’herbe: un outil pour le pilotage de la fertilisation phosphatée et potassique des prairies naturelles et temporaires. Institut de l’Elevage, Paris

    Google Scholar 

  • Van der Wal R, Pearce I, Brooker R, Scott D, Welch D, Woodin S (2003) Interplay between nitrogen deposition and grazing causes habitat degradation. Ecol Lett 6:141–146

    Article  Google Scholar 

  • Van der Wal R, Bardgett RD, Harrison KA, Stien A (2004) Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 27:242–252

    Article  Google Scholar 

  • Walker TW, Adams AFR (1958) Studies on soil organic matter: 1. Influence of phosphorus content of parent material on accumulations of carbon, nitrogen, sulphur and organic phosphorus in grassland soils. Soil Sci 85:307–318

    Article  CAS  Google Scholar 

  • Walworth JL, Sumner ME, Isaac RA, Plank CO (1986) Preliminary DRIS norms for alphalpha in the southeastern United States and a comparison with Midwestern norms. Agron J 78:1046–1052

    Article  CAS  Google Scholar 

  • Wassen MJ, Olde Venterink H, Lapshina ED, Tanneberger F (2005) Endangered plant species persist under phosphorus limitation. Nature 437:547–549

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ, Matthews DI (2008) A 10-years study of phosphorus balances and the impact of grazed grassland on total P redistribution within the soil profile. Eur J Soil Sci 59:1171–1176

    Article  CAS  Google Scholar 

  • White RE, Tayoub AT (1983) Decomposition of plant residues of variable C:P ratio and the effect on soil phosphate availability. Plant Soil 74:163–173

    Article  CAS  Google Scholar 

  • Ziadi N, Bélanger G, Cambouris AN, Tremblay N, Nolin MC, Claessens A (2007) Relationship between P and N concentrations in corn. Agron J 99:833–841

    Article  CAS  Google Scholar 

  • Ziadi N, Bélanger G, Cambouris AN, Tremblay N, Nolin MC, Claessens A (2008) Relationship between phosphorus and nitrogen concentrations in spring wheat. Agron J 100:80–86

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Jouany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Jouany, C., Cruz, P., Daufresne, T., Duru, M. (2011). Biological Phosphorus Cycling in Grasslands: Interactions with Nitrogen. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_11

Download citation

Publish with us

Policies and ethics