Skip to main content

Abstract

Compared with other Brassica crops, such as rapeseed (Brassica napus), B. rapa, B. oleracea, or B. juncea, the genus Crambe L. is still under development as an agricultural crop and is not widely grown. In some species, utilization as an herbaceous or root vegetable is known since several centuries. Thus Crambe maritima, known as sea-kale, is a traditional vegetable in its growing regions in northern parts of Central Europe. Further species, e.g., C. cordifolia and C. tataria, are in their natural habitat (central Asia) also of minor importance for food and feed, particularly in times of famine. Nevertheless, the genus Crambe demands attention in an essay about wild relatives of oilseeds and their role in plant genome elucidation and improvement. On the one hand, as a monophyletic genus whose species form a well defined polyploid series from 2n = 30 to 2n = 150, it is of great phylogenetic interest. On the other hand, some species started an agricultural career when their ability as alternative oil crops to rapeseed was recovered in the 1930s in Russia. Since the 1950s, when its extraordinary seed oil quality had been described, one species, namely Crambe abyssinica, became of growing interest as a renewable source of oil for industrial use. It lacks genetic variation for important agronomic traits; however, attempts were made to optimize the seed oil composition via interspecific crosses and traditional breeding, mutagenesis and genetic transformation, etc. Crambe species may also serve as a useful source of genes for Brassica crop improvement via somatic hybridization and embryo rescue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri A, Prem D, Gupta K (2007) The chronicles of oil and meal quality improvement in oilseed rape. In: Gupta SK (ed) Advances in botanical research, vol 45, Rapeseed breeding. Academic, San Diego, CA, pp 50–97

    Google Scholar 

  • Aguinagalde I, Gomez-Campo C (1984) The phylogenetic significance of flavonoids in Crambe (Cruciferae). Bot J Linn Soc 89:277–288

    Article  Google Scholar 

  • AIR (1998) AIR3-CT94-2480: http://www.biomatnet.org/secure/Air/F707.htm. Accessed 15 Jan 2009

  • Amelung D (1995) Schaderreger in Sommerölkulturen. Mitt Biol Bundesanst Land- u. Forstwirtsch. Berlin-Dahlem 310:61–72

    Google Scholar 

  • Anderson MD, Peng C, Wessi MJ (1992) Crambe, Crambe abyssinica Hochst., as a flea beetle resistant crop (Coleoptera: Chrysomelidae). J Econ Entomol 85:594–600

    Google Scholar 

  • Appel O, Al-Shebaz I (2003) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants, vol 5: Flowering plants-Dicotyledons. Malvales Capparales and non-betalain Caryophyllales. Springer, Berlin, pp 75–174

    Google Scholar 

  • Artus NN (2006) Arsenic and cadmium phytoextraction potential of Crambe compared with indian mustard. J Plant Nutr 29:667–679

    Article  CAS  Google Scholar 

  • Beck LC, Lessman KJ, Buker RJ (1975) Inheritance of pubescence and its use in outcrossing measurements between a Crambe hispanica type and C. abyssinica Hochst. ex R. E. Fries. Crop Sci 15:221–224

    Article  Google Scholar 

  • BGCI (2009) Botanic gardens conservation international. http://www.bgci.org. Accessed 10 Mar 2009

  • Briard M, Horvais AP, Ron JY (2002) Wild seakale (Crambe maritima L.) diversity as investigated by morphological and RAPD markers. Sci Hort 95:1–12

    Article  CAS  Google Scholar 

  • Bruun J, Matchett J (1963) Utilization potential of Crambe abyssinica. JAOCS 40:1–5

    Article  Google Scholar 

  • Campbell TA, Crock J, Williams JH, Hang AN, Sigafus RE, Schneiter AA, McClain EF, Graves CR, Woodley DF, Kleiman R, Adamson WC (1986a) Registration of ‘BelAnn’ and ‘BelEnzian’ crambe. Crop Sci 26:1082–1083

    Article  Google Scholar 

  • Campbell TA, Crock J, Williams JH, Hang AN, Sigafus RE, Schneiter AA, McClain EF, Graves CR, Woodley DF, Kleiman R, Adamson WC (1986b) Registration of C-22, C-29, and C-37 crambe germplasm. Crop Sci 26:1088–1089

    Article  Google Scholar 

  • Cárcamo H, Olfert O, Dosdall L, Herle C, Beres B, Soroka J (2007) Resistance to cabbage seedpod weevil among selected Brassicaceae germplasm. Can Entomol 139:658–669

    Article  Google Scholar 

  • Carlson KD, Gardner JC, Anderson VL, Hanzel JJ (1996) Crambe: new crop success. In: Janick J (ed) Progress in new crops. ASHS, Alexandria, VA, pp 306–322

    Google Scholar 

  • Carlsson AS (2006) Production of wax esters in crambe. Outputs from the EPOBIO project: http://www.epobio.net/pdfs/0611CrambeWaxEstersReport_c.pdf. Accessed 10 Mar 2009

  • Carlsson AS, Clayton D, Salentijn E, Toonen M (2007) Oil crop platforms for industrial uses. Outputs from the EPOBIO project: http://www.epobio.net/pdfs/0704OilCropsReport.pdf. Accessed 10 Mar 2009

  • Castleman G, Paymer S, Greenwood C (1999) Potential for Crambe (C. abyssinica) in Mallee/Wimmera of Australia. In: Proceedings of the 10th international rapeseed congress, Canberra, Australia, 26–29 Sept 1999. http://www.regional.org.au/au/gcirc/. Accessed 10 Mar 2009

  • Chu CQ, Wang YP, Chu CC (2001) Influence of EMS & 60Co on seed physiology of Crambe and its agronomic characteristics. Agro-Food Ind Hi-Tech 12(4):23–25

    CAS  Google Scholar 

  • Comlekcioglu N, Karaman S, Ilcim A (2008) Oil composition and some morphological characters of Crambe orientalis var. orientalis and Crambe tataria var. tataria from Turkey. Nat Prod Res 22:525–532

    Article  CAS  PubMed  Google Scholar 

  • CWR (2009) Crop wild relatives portal. http://cropwildrelatives.org. Accessed 10 Mar 2009

  • Daubos P, Grumel V, Iori R, Leoni O, Palmieri S, Rollin P (1998) Crambe abyssinica meal as starting material for the production of enantiomerically pure fine chemicals. Ind Crops Prod 7:187–193

    Article  CAS  Google Scholar 

  • Dolya V, Shkurupii E, Podzolkova T, Kaminskii N (1973) The seed oils of some species of the family Cruciferae. Chem Nat Comp 9:12–14

    Article  Google Scholar 

  • Dolya VS, Shkurupii EN, Kaminskii NA, Magerya ED (1977) Oils of the seeds of nine species of the genus Crambe. Chem Nat Comp 13:14–16

    Google Scholar 

  • Downey RK (1971) Agricultural and genetic potentials of cruciferous oilseed crops. JAOCS 48:718–722

    Article  CAS  Google Scholar 

  • Duhoon SS, Koppar MN (1998) Distribution, collection and conservation of bio-diversity in cruciferous oilseeds in India. Genet Resour Crop Evol 45:317–323

    Article  Google Scholar 

  • Earle F, Melvin E, Mason L, van Etten C, Wolff I, Jones Q (1959) Search for new industrial oils. I. Selected oils from 24 plant families. JAOCS 36:304–307

    Article  CAS  Google Scholar 

  • Earle F, Peters J, Wolff I, White G (1966) Compositional differences among crambe samples and between seed components. JAOCS 43:330–333

    Article  CAS  Google Scholar 

  • Erickson D, Bassin P (1990) Rapeseed and Crambe: alternative crops with potential industrial uses. Woods, W. R. 1-33. Agriculture Experiment Station Bulletin 656, Kansas State University, Manhattan

    Google Scholar 

  • EURISCO (2009) http://eurisco.ecpgr.org. Accessed 10 Mar 2009

  • FAIR (2003) FAIR-CT98-4333. http://www.biomatnet.org/secure/Fair/F821.htm. Accessed 15 Jan 2009

  • Francois LE, Kleiman R (1990) Salinity effects on vegetative growth, seed yield, and fatty-acid composition of Crambe. Agron J 82:1110–1114

    Article  CAS  Google Scholar 

  • Francisco-Ortega J, Fuertes-Aguilar J, Gomez-Campo C, Santos-Guerra A, Jansen RK (1999) Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): Molecular data reveal two Old World disjunctions. Mol Phylogenet Evol 11(3):361–380

    Article  CAS  PubMed  Google Scholar 

  • Francisco-Ortega J, Fuertes-Aguilar J, Kim SC, Santos-Guerra A, Crawford DJ, Jansen RK (2002) Phylogeny of the Macaronesian endemic Crambe section Dendrocrambe (Brassicaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Am J Bot 89:1984–1990

    Article  CAS  Google Scholar 

  • Gao HB, Wang YP, Gao FL, Luo P (1998) Plant regeneration from single cell culture of Crambe abyssinica. Acta Bot Yunnanica 20(2):247–250

    Google Scholar 

  • Goffman FD, Thies W, Velasco L (1999) Chemotaxonomic value of tocopherols in Brassicaceae. Phytochemistry 50:793–798

    Google Scholar 

  • Gomez-Campo C (2000) A germplasm collection of Crucifers. http://www.etsia.upm.es/DEPARTAMENTOS/biologia/documentos/GC-2000-Int.htm. Accessed 10 Mar 2009

  • GRIN (2009) Germplasm resources information network. http://www.ars-grin.gov. Accessed 10 Mar 2009

  • Hahnelt P (1997) Lesser known or forgotten cruciferous vegetables and their history. In: Gregoire T, Monteiro AA (eds) Brassica ‘97, Proceedings of the international symposium on Brassicas, Rennes, France, 22–27 Sept 1997, Acta Hort 459:39–45

    Google Scholar 

  • Hedrick UP (ed) (1919) Sturtevants edible plants of the World. The Southwest School of Botanical Medicine. http://www.swsbm.com. Accessed 23 Sept 2003

  • Johnson BL, Mckay KR, Schneiter AA, Hanson BK, Schatz BG (1995) Influence of planting date on canola and crambe production. J Prod Agric 8:594–599

    Google Scholar 

  • Kalischuk AR, Dosdall LM (2004) Susceptibilities of seven Brassicaceae species to infestation by the cabbage seedpod weevil (Coleoptera: Curculionidae). Can Entomol 136:265–276

    Article  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Mitchell-Olds T (2005) The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr Opin Plant Biol 8:264–271

    Article  CAS  PubMed  Google Scholar 

  • Knights SE (2002) Crambe. A North Dakota Case Study. A report for the Rural Industries Research and Development Corporation. Rural Industries Research and Development Corporation, RIRDC publication No W 02/005, Barton ACT, Australia

    Google Scholar 

  • Kumar PR, Tsunoda S (1978) Fatty acid spectrum of Mediterranean wild Cruciferae. JAOCS 55:320–323

    Article  CAS  Google Scholar 

  • Lazzeri L, Tacconi R, Palmieri S (1993) In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. J Agric Food Chem 41:825–829

    Article  CAS  Google Scholar 

  • Lazzeri L, Leoni O, Conte LS, Palmieri S (1994) Some technological characteristics and potential uses of Crambe abyssinica products. Ind Crops Prod 3:103–112

    Article  CAS  Google Scholar 

  • Leppik EE, White GA (1974) Preliminary assessment of Crambe germplasm resources. Euphytica 24(3):681–689

    Article  Google Scholar 

  • Lessman KJ, Meier VD (1972) Agronomic evaluation of Crambe as a source of oil. Crop Sci 12:224–227

    Article  Google Scholar 

  • Lessman K (1975) Variation in crambe, Crambe abyssinica Hochst ex Fries. JAOCS 52:386–389

    Article  CAS  Google Scholar 

  • Liang MS, Zeng Y, Wang YP (1998) Isolation and charterization of gene promoter form Crambe abyssinica. Chin J Oil Crop Sci 20(1):1–6

    Google Scholar 

  • Liu CC, Qiao FX (2008) Cloning and hpRNAi vector construction for genes of thiohydroximate S-glucosyltransferase in Crambe abyssinica. J Xiaogan Univ 28(6):11–15

    Google Scholar 

  • Lysak MA, Cheung K, Kitschke M, Bures P (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Yadav S, Singh R, Begum G, Suneja P, Singh M (2002) Correlation studies on oil content and fatty acid profile of some Cruciferous species. Genet Resour Crop Evol 49:551–556

    Google Scholar 

  • Mangan C (1995) Non-food crops and non-food uses in EC research programs. FEMS Microbiol Rev 16:81–88

    Article  CAS  Google Scholar 

  • Manton I (1932) Introduction to the general cytology of the Cruciferae. Ann Bot 46:509–556

    Google Scholar 

  • Marhold K, Lihova J (2006) Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Plant Syst Evol 259:143–174

    Article  Google Scholar 

  • Mari M, Iori R, Leoni O, Marchi A (1993) In vitro activity of glucosinolate-derived isothiocyanates against postharvest fruit pathogens. Ann Appl Biol 123:155–164

    Article  CAS  Google Scholar 

  • Mastebroek HD, Wallenburg SC, van Soest LJM (1994) Variation for agronomic characteristics in crambe (Crambe abyssinica Hochst. ex Fries). Ind Crops Prod 2:129–136

    Article  Google Scholar 

  • Mastebroek HD, Lange W (1997) Progress in a crambe cross breeding programme. Ind Crops Prod 6:221–227

    Article  Google Scholar 

  • McKillican M (1966) Lipid changes in maturing oil-bearing plants. JAOCS 43:461–465

    Article  CAS  Google Scholar 

  • Meier VD, Lessman KJ (1973a) Breeding behavior for crosses of Crambe abyssinica and a plant introduction designated C. hispanica. Crop Sci 13:49–51

    Article  Google Scholar 

  • Meier VD, Lessman KJ (1973b) Heritabilities of some agronomic characters for the interspecific cross of Crambe abyssinica and C. hispanica. Crop Sci 13:237–240

    Article  Google Scholar 

  • Mikolajczak K, Miwa T, Earle F, Wolff I, Jones Q (1961) Search for new industrial oils. V. Oils of cruciferae. JAOCS 38:678–681

    Article  CAS  Google Scholar 

  • Miller RW, Earle FR, Wolff IA, Jones J (1965) Search for new industrial oils. XIII. Oils from 102 species of cruciferae. JAOCS 42:817–821

    Article  CAS  Google Scholar 

  • Mietkiewska E, Brost J, Giblin EM, Barton DL, Taylor DC (2007) Cloning and functional characterization of the Fatty Acid Elongase I (FAE) gene from high erucic aicd Crambe abyssinica cv. Prophet. Plant Biotechnol J 5:636–645

    Article  CAS  PubMed  Google Scholar 

  • Mietkiewska E, Hoffman TL, Brost JM, Giblin EM, Barton DL, Francis T, Zhang Y, Taylor DC (2008) Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds. Mol Breed 22:619–627

    Article  CAS  Google Scholar 

  • Miwa T, Wolff I (1963) Fatty acids, fatty alcohols, wax esters, and methyl esters from Crambe abyssinica and Lunaria annua seed oils. JAOCS 40:742–744

    Article  CAS  Google Scholar 

  • Mulder JH, Mastebroek HD (1996) Variation for agronomic characteristics in Crambe hispanica, a wild relative of Crambe abyssinica. Euphytica 89:267–278

    Article  Google Scholar 

  • Mustakas G, Kopas G, Robinson N (1965) Prepress-solvent extraction of crambe: first commercial trial run of new oilseed. JAOCS 42:550A–554A

    Article  Google Scholar 

  • Nieschlag H, Wolff I (1971) Industrial uses of high erucic oils. JAOCS 48:723–727

    Article  CAS  Google Scholar 

  • Oplinger ES, Oelke EA, Kaminski AR, Putnam DH, Teynor TM, Doll JD, Kelling KA, Durgan BR, Noetzel DM (1991) Crambe. http://www.hort.purdue.edu/newcrop/AFCM/crambe.html. Accessed 10 Mar 2009

  • Ozinga WA, Schaminée JHJ (2005) (eds) Target species – species of European concern. A database driven selection of plant and animal species for the implementation of the Pan European Ecological Network. Wageningen, Alterra, Alterra-report 1119. http://www.ocs.polito.it/biblioteca/ecorete/1119.pdf. Accessed 15 Mar 2009

  • Papathanasiou GA, Lessman KJ, Nyquist WE (1966) Evaluation of eleven introductions of Crambe, Crambe abyssinica Hochst. Ex Fries. Agron J 58:587–589

    Article  Google Scholar 

  • Péron J-Y (1990) Seakale: a new vegetable produced as etiolated sprouts. In: Janick J, Simon JE (eds) Advances in new crops. Timber, Portland, OR, pp 419–422

    Google Scholar 

  • Paulose B, Zulfiqar A, Parkash O (2007) Isolation and characterization of arsenic induced genes from Crambe abyssinica. In: 71st annual meeting of the northeast section of the American society of plant biology. Fueling the future through plant biology, Syracuse, NY, USA, 1–2 June 2007 (Poster abstr). http://www.esf.edu/outreach/neaspb/NEASPB%202007%20Program%20Booklet.pdf. Accessed 10 Mar 2009

  • Prantl K (1891) Cruciferae. In: Engler HGA, Prantl KAE (Hrsg) Die Natürlichen Pflanzenfamilien. Leipzig, Germany, p 145

    Google Scholar 

  • Prina A (2000) A taxonomic revision of Crambe, sect. Leptocrambe (Brassicaceae). Bot J Linn Soc 133:509–524

    Article  Google Scholar 

  • Prina A, Martinéz-Laborde JB (2008) A taxonomic revision of Crambe section Dendrocrambe (Brassicaceae). Bot J Linn Soc 156:291–304

    Article  Google Scholar 

  • Princen L (1983) New oilseed crops on the horizon. Econ Bot 37:478–492

    Article  CAS  Google Scholar 

  • Princen L, Rothfus J (1984) Development of new crops for industrial raw materials. JAOCS 61:281–289

    Article  CAS  Google Scholar 

  • Quinsac A, Ribaillier D, Charrier A (1994) Glucosinolates in etiolated sprouts of sea-kale (Crambe maritima L). J Sci Food Agric 65:201–207

    Article  CAS  Google Scholar 

  • Renfrew J, Sanderson H (2005) Herbs and vegetables. In: Prance G, Nesbitt M (2005) The cultural history of plants. Rutledge, New York, p 127

    Google Scholar 

  • Reuber MA, Johnson LA, Watkins LR (2001) Dehulling crambe seed for improved oil extractionand meal quality. JAOCS 78:661–664

    Article  CAS  Google Scholar 

  • Röbbelen G (1984) Biogenese und Verfügbarkeit pflanzlicher Fettrohstoffe. Fette Seifen Anstrichmittel 86:373–379

    Article  Google Scholar 

  • Scholze P, Hammer K (1997) Evaluation of resistance to Plasmodiophora brassicae, Alternaria and Phoma in Brassicaceae. In: Gregoire T, Monteiro AA (eds) Brassica ‘97, Proceedings of the international symposium on Brassicas, Rennes, France, 22–27 Sept 1997, Acta Hort 459:363–369

    Google Scholar 

  • Schrader-Fischer G, Apel K (1994) Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet 245:380–389

    Article  CAS  PubMed  Google Scholar 

  • Schulz OE (1919) Cruciferae-Brassiceae. Subtribus. Pars Prima I. Brassicinae et II. Raphaninae. Wilhelm Engelmann, Leipzig, pp 228–249

    Google Scholar 

  • Shahidi F, Naczk M (1990) Removal of glucosinolates and other antinutritients from canola and rapeseed by methanol/ammonia processing. In: Shahidi F (ed) Canola and rapeseed – production, chemistry, nutrition and processing technology. Van Nostrand Reinhold, New York, pp 291–306

    Google Scholar 

  • Somers DJ, Demmon G (2002) Identification of repetitive, genome-specific probes in crucifer oilseed species. Genome 45:485–492

    Article  CAS  PubMed  Google Scholar 

  • Suda J, Kyncl T, Freiova R (2003) Nuclear DNA amounts in macaronesian angiosperms. Ann Bot 92:153–164

    Article  PubMed  Google Scholar 

  • Tang TZ, Niu YZ, Shu HX (2006) Cytological observation on intergeneric hybrid between Brassica chinensis and Crambe abyssinica. Hereditas (Beijing) 28(2):189–194

    Google Scholar 

  • Ul’chenko NT, Bekker NP, Glushenkova AI, Akhmedzhanov IG (2001) Lipids of Crambe kotschyana and Megacarpaea gigantea Seeds. Chem Nat Comp 37:285–286

    Article  Google Scholar 

  • Umarov A, Chernenko T, Markman A (1972) The oils of some plants of the family Cruciferae. Chem Nat Comp 8:20–22

    Article  Google Scholar 

  • Umarov A, Kisapova N (1973) The seed oils of Erysimum silvestris and Crambe amabilis. Chem Nat Comp 9:99–100

    Article  Google Scholar 

  • Wang YP, Luo P, Li XF (1995) Preliminary study on Crambe abyssinica. Acta Bot Yunannica 17:169–174

    Google Scholar 

  • Wang YP, Luo P (1998) Intergeneric hybridization between Brassica species and Crambe abyssinica. Euphytica 101:1–7

    Article  Google Scholar 

  • Wang YP, Tang JS, Chu CQ, Tian J (2000) A preliminary study on the introduction and cultivation of Crambe abyssinica in China, an oil plant for industrial uses. Ind Crops Prod 12:47–52

    Article  Google Scholar 

  • Wang YP, Sonntag K, Rudloff E (2003) Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet 106:1147–1155

    CAS  PubMed  Google Scholar 

  • Wang YP, Snowdon RJ, Rudloff E, Wehling P, Friedt W, Sonntag K (2004) Cytogenetic characterization and fae1 gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica. Genome 47:724–731

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Sonntag K, Rudloff E, Wehling P, Snowdon RJ (2006) GISH analysis of disomic Brassica napus-Crambe abyssinica chromosome addition lines produced by microspore culture from monosomic addition lines. Plant Cell Rep 25:35–40

    Article  PubMed  Google Scholar 

  • Warwick SI, Black LD (1997) Phylogenetic implications of chloroplast DNA restriction site variation in subtribes Raphaninae and Cakilinae (Brassicaceae, tribe Brassiceae). Can J Bot 75:960–973

    Google Scholar 

  • Warwick SI, Francis A, LaFleche J (2000) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae), 2nd edn. AAFC-ECORC Contribution No XXXX. http://www.brassica-resource.org/data/pdf/brass00.pdf. Accessed 22 Feb 2010

  • Warwick SI, Gugel RK (2003) Genetic variation in the Crambe abyssinicaC. hispanicaC. glabrata complex. Genet Resour Crop Evol 50:291–305

    Article  CAS  Google Scholar 

  • Warwick SI, Al Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248

    Article  Google Scholar 

  • Warwick SI, Francis A, Al Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258

    Article  Google Scholar 

  • Watson L, Dallwitz MJ (1992) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. Version: 25th Nov 2008. http://delta-intkey.com/angio/images/cruci226.gif. Accessed 12 Feb 2009

  • White GA, Solt M (1978) Chromosome numbers in Crambe, Crambella, and Hemicrambe. Crop Sci 18:160–161

    Article  Google Scholar 

  • White GA, Gardner JC, Cook CG (1994) Biodiversity for industrial crop development in the United States. Ind Crop Prod 2:259–272

    Article  Google Scholar 

  • Wink M (2007) Importance of plant secondary metabolites for protection against insects and microbial infections. In: Rai M, Carpinello M (eds) Naturally occurring bioactive compounds, vol 3, Advances in phytomedicine. Elsevier, Amsterdam, pp 251–268

    Chapter  Google Scholar 

  • Zimmermann H-G (1963) Die Sitzfestigkeit der Früchte der Krambe (Crambe abyssinica Hochst.) und ihre Prüfung. Theor Appl Genet 33:190–196

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eicke Rudloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rudloff, E., Wang, Y. (2011). Crambe. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_5

Download citation

Publish with us

Policies and ethics